• Title/Summary/Keyword: Ochrobactrum anthropi JW-2

Search Result 2, Processing Time 0.014 seconds

Characterization of a paraquat resistance of Ochrobactrum anthropi JW-2. (Ochrobactrum anthropi JW-2의 paraquat 내성에 관한 특성)

  • 원성혜;이병현;조진기
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • The bacterial strain JW-2 which conferred resistance against paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride) was isolated from soil. The strain was identified as an Ochrobactrum anthropi based on its morphological, physiological, biological and fatty acid composition, and was designated as Ochrobactrum anthropi JW-2. We compard paraquat resistance of O. anthropi JW-2 with Escherichia coli J105. In the presence of 100mM paraquat, E. coli JM105 was not grown whereas the growth rate of O. anthropi was about 70% of control. We compared the sensitivity of O. anthropi JW-2 and E. coli J105 to redox-cycling compounds such as paraquat, plumbagin or menadione, which are known to exacebate wuperoxide generation. O. anthropi JW-2 did not show cross-resistance to plumbagin or menadione. superoxide dismutase activity was increased in paraqunt-treated E. coli JM105 while it was not increased in O.anthropi JW-2. These results suggest that the mechanism of paraquat resistance in O.anthropi JW-2 is probably due to selectively decreased permeability toward paraquat by membrane protein.

  • PDF

Cloning and Characterization of the Paraquat Resistance-Related Genes from Ochrobactrum anthropi JW-2 (Ochrobactrum anthropi JW-2 유래의 Paraquat 내성유전자 PqrA의 주변 유전자군 분석)

  • Bae Eun-Kyung;Lee Hyo-Shin;Won Sung-Hye;Lee Byung-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.1
    • /
    • pp.15-22
    • /
    • 2006
  • A 4,971 bp chromosomal DNA fragment containing the pqrA, paraquat resistance gene, was cloned from Ochrobactrum anthropi JW-2, and the complete nucleotide sequence was determined. Nucleotide and deduced amino acid sequences of the fragment revealed the presence of 4 complete ORFs (orf2, pqrA, orf3, orf4) and two incomplete ORFs(orf1, orf5). Orf1, pqrA, orf4 and orf5 exists at the direct strand but orf2 and orf3 exists at the reverse complementary strand. Orf1 which of incomplete sequences without start codon shares homology with ATP binding region of the response regulator receiver. Orf2 shares high homology with members of the tetR family of transcriptional repressor which have a helix-turn-helix (H-T-H) motif. Therefore, the orf2 is predicted as a transcriptional repressor of pqrA and is designated as pqrR2. Orf3 shares high homology with the members of the lysR family acting as a transcriptional activator which have both of a H-T-H motif at the N-terminal region and substrate binding domain at the C-terminal region. Therefore, the orf3 is predicted as a transcriptional activator of pqrA and is designated as pqrR1. Orf4 shows homology with the periplasmic substrate-binding protein of amino acid ABC transporter. Orf5 which of incomplete sequences without stop codon revealed the homology with the permeases protein of amino acid ABC transporter.