• Title/Summary/Keyword: Oceanographic observation data

Search Result 103, Processing Time 0.02 seconds

Tidal Level Prediction of Busan Port using Long Short-Term Memory (Long Short-Term Memory를 이용한 부산항 조위 예측)

  • Kim, Hae Lim;Jeon, Yong-Ho;Park, Jae-Hyung;Yoon, Han-sam
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.469-476
    • /
    • 2022
  • This study developed a Recurrent Neural Network model implemented through Long Short-Term Memory (LSTM) that generates long-term tidal level data at Busan Port using tide observation data. The tide levels in Busan Port were predicted by the Korea Hydrographic and Oceanographic Administration (KHOA) using the tide data observed at Busan New Port and Tongyeong as model input data. The model was trained for one month in January 2019, and subsequently, the accuracy was calculated for one year from February 2019 to January 2020. The constructed model showed the highest performance with a correlation coefficient of 0.997 and a root mean squared error of 2.69 cm when the tide time series of Busan New Port and Tongyeong were inputted together. The study's finding reveal that long-term tidal level data prediction of an arbitrary port is possible using the deep learning recurrent neural network model.

A Study on the Improvement of Satellite Image Information Service System (위성영상정보 서비스 시스템 개선방안 연구)

  • Cho, Bo-Hyun;Yang, Keum-Cheol;Kim, Song-Gang;Yoo, Seung-Jae
    • Convergence Security Journal
    • /
    • v.17 no.5
    • /
    • pp.41-47
    • /
    • 2017
  • The Marine Environment Observation Information System supplies oceanographic information elements such as water temperature, chlorophyll, float, etc. based on satellite images to consumers. The data produced by the Korean marine environmental observatories are located in the coastal areas of Korea. But if the range is too far from a particular area of interest, due to distance or spatial constraints, the accuracy and up-to-dateness of the data can not be relied upon. Therefore, it is necessary to perform fusion and complex operation to solve the difference between the field observation and the marine satellite image. In this study, we develop a system that can process marine environmental information in the user's area of interest in the form of layered character (numeric) information considering the readability and light weight rather than the satellite image. In order to intuitively understand satellite image information, we characterize (quantify) the marine environmental information of the area of interest and we process the satellite image band values into layered characters to minimize the absolute amount of transmitted / received data. Also we study modular location-based interest information service method to be able to flexibly extend and connect interested items that diversify various observation fields as well as application technology to serve this.

Wave and surface current measurement with HF radar in the central east coast of Korea (동해중부에서 HF Radar를 이용한 파랑 및 해수유동 관측)

  • Kim, Moo-Hong;Kim, Gyung-Soo;Kim, Hyeon-Seong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.771-780
    • /
    • 2014
  • We installed HF Radar of Array type in Site A and Site B, observing the real-time wave and current in the central East coast of Korea. WERA(WavE RAdar) in this research uses HF Radar of Array Type with frequency range of 24.525 MHz, developed by Helzel, Germany. Each site is a 8-Channel system consisting of four transmitters and eight receivers, generating wave and current data, being observed every thirty minutes at the present time. HF Radar has grid resolution of an interval of 1.5 km using bandwidth of 150 kHz; The wave data covers an observation range of about 25 km, and the current data covers the maximum observation range of about 50 km. The Wave data observed by HF Radar was compared and verified with the AWAC data observed in the research sites. MIT also compared the Current data observed by HF Radar with Monthly the East sea average surface current and current flow pattern provided by KOHA(Korea Hydrographic and oceanographic Administration). The regression line and deviation of the comparison data of Wave was calculated by Principal Component Analysis, which showed correlation coefficient 0.86 and RMSD 0.186. Besides, data analysis of long-term changes of the current in the East coast showed that, during August and September, the North Korean Cold Current flow into the southward direction and the East Korean Warm Current flow into the northward direction in the coast.

The Comparison of Thermal Infrared Satellite Observation for Plume Assessment of Thermal Discharge (온배수 확산 평가를 위한 열적외선 위성관측 비교)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.4
    • /
    • pp.367-374
    • /
    • 2015
  • To examine the effect of thermal discharge from nuclear power plants, Sea Surface Temperature (SST) is one of the most important variables measured by satellite remote sensing. However, the study was not much comparison of field data and satellite SST from operational Landsat 8 Thermal Infrared Sensor(TIRS) and Landsat 7 ETM+. The Landsat 8 TIRS have 2 spilt Thermal Infrared channels but ETM+ uses one channel for extracting of SST. In spite of that this research carried out that Landsat 7 ETM+ have more profitable for correction of SST than Landsat 8 TIRS. The used 15 Landsat 7 and 8 Thermal Infrared data of path/row 114-36 were processed by SST algorithm of ENVI and IDL. The in-situ SST data from KHOA(Korea Hydrographic and Oceanographic Administration) compared with satellite SST and the accuracy of extracted SST were assessed by each field sites in-situ point data with time series satellite SST.

Investigating the Adjustment Methods of Monthly Variability in Tidal Current Harmonic Constants (조류 조화상수의 월변동성 완화 방법 고찰)

  • Byun, Do-Seong
    • Ocean and Polar Research
    • /
    • v.33 no.3
    • /
    • pp.309-319
    • /
    • 2011
  • This is a preliminary study of the feasibility of obtaining reliable tidal current harmonic constants, using one month of current observations, to verify the accuracy of a tidal model. An inference method is commonly used to separate out the tidal harmonic constituents when the available data spans less than a synodic period. In contrast to tidal constituents, studies of the separation of tidal-current harmonics are rare, basically due to a dearth of the long-term observation data needed for such experiments. We conducted concurrent and monthly harmonic analyses for tidal current velocities and heights, using 2 years (2006 and 2007) of current and sea-level records obtained from the Tidal Current Signal Station located in the narrow waterway in front of Incheon Lock, Korea. Firstly, the l-year harmonic analyses showed that, with the exception of $M_2$ and $S_2$ semidiurnal constituents, the major constituents were different for the tidal currents and heights. $K_1$, for instance, was found to be the 4th major tidal constituent but not an important tidal current constituent. Secondly, we examined monthly variation in the amplitudes and phase-lags of the $S_2$ and $K_1$ current-velocity and tide constituents over a 23-month period. The resultant patterns of variation in the amplitudes and phase-lags of the $S_2$ tidal currents and tides were similar, exhibiting a sine curve form with a 6-month period. Similarly, variation in the $K_1$ tidal constant and tidal current-velocity phase lags showed a sine curve pattern with a 6-month period. However, that of the $K_1$ tidal current-velocity amplitude showed a somewhat irregular sine curve pattern. Lastly, we investigated and tested the inference methods available for separating the $K_2$ and $S_2$ current-velocity constituents via monthly harmonic analysis. We compared the effects of reduction in monthly variability in tidal harmonic constants of the $S_2$ current-velocity constituent using three different inference methods and that of Schureman (1976). Specifically, to separate out the two constituents ($S_2$ and $K_2$), we used three different inference parameter (i.e. amplitude ratio and phase-lag diggerence) values derived from the 1-year harmonic analyses of current-velocities and tidal heights at (near) the short-term observation station and from tidal potential (TP), together with Schureman's (1976) inference (SI). Results from these four different methods reveal that TP and SI are satisfactorily applicable where results of long-term harmonic analysis are not available. We also discussed how to further reduce the monthly variability in $S_2$ tidal current-velocity constants.

Relationship between Weather factors and Water Temperatures, Salinities in the West Sea of Korea (한국 서해에서 기상인자와 수온, 염분과의 관계)

  • Lee Jong Hee;Kim Dong Sun
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.11a
    • /
    • pp.181-185
    • /
    • 2003
  • the effect if atmosphere is more important in the West sea of Korea than in other seas because of shallow water and heat storage if the water. The serial oceanographic observation data and coastal station data from NFRID, and the atmosphere data from KMA were used in order to find out the relationship between them The highest water temperature, salinity and weather factor were recorded in Aug, and the lowest of them in Feb. As the water deepens, the maximum time leg in water temperature and the minimum time leg in salinity. Water temperature have the maximum in Oct, the minimum in Apr at 75m of the 311-07 station with 100m depth water temperature (WT)-air temperature, WT-precipitation (Preci.) and salinity (Sal)-wind speed (WS) were in direct proportion, but WT-WS, Sal-AT and Sal-Preci in inverse proportion Water temperature and salinity I-ave time leg at the same depth the maximum had more the delay of $2\~4$ months at a depth if 20 meters than at the surface in all stations except for salinity at 307-05.

  • PDF

Estimation of Representative Wave Period and Optimal Probability Density Function Using Wave Observed Data around Korean Western Coast (국내 서해안 파랑 관측자료를 이용한 대표주기 산정 및 최적 확률밀도함수 추정)

  • Uk-Jae Lee;Hong-Yeon Cho;Jin Ho Park;Dong-Hui Ko
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.146-154
    • /
    • 2023
  • In this study, the peak wave period Tp and mean wave period T02 and Tm-1, 0, which are major parameters for classifying ocean characteristics, were calculated using water surface elevation data observed from the second west coast oceanographic and meteorological observation tower. In addition, the ratio of abnormal data, correlation analysis, and optimal probability density function were estimated. In the case of Tp among the calculated representative periods, the proportion of abnormal data was 5.73% and 0.67% at each point, and T02 was 4.35% and 0.01%. Tm-1, 0 was found to be 2.82% and 0.03%. Meanwhile, as a result of analyzing the relationship between T02 and Tp, the relationship was calculated to be 0.53 and 0.63 for each point. The relationship between Tm-1, 0 and Tp was 1.15 and 1.32, respectively, and T02, Tm-1, 0 was 1.18 and 1.22. As a result of estimating the optimal probability density function of the calculated representative period, Tp followed the 'Log-normal' and 'Normal' distributions at each point, and T02 was 'Gamma', 'Normal' distribution and Tm-1, 0 showed that 'Log-normal' and 'Normal' distribution were dominant, respectively. It is decided that these results can be used as basic data for wave analysis conducted on the west coast.

Spatial analysis of Shoreline change in Northwest coast of Taean Peninsula

  • Yun, MyungHyun;Choi, ChulUong
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.29-38
    • /
    • 2015
  • The coastline influenced naturally and artificially changes dynamically. While the long-term change is influenced by the rise in the surface of the sea and the changes in water level of the rivers, the short-term change is influenced by the tide, earthquake and storm. Also, man-made thoughtless development such as construction of embankment and reclaimed land not considering erosion and deformation of coast has been causes for breaking functions of coast and damages on natural environment. In order to manage coastal environment and resources effectively, In this study is intended to analyze and predict erosion in coastal environment and changes in sedimentation quantitatively by detecting changes in coastal line from data collection for satellite images and aerial LiDAR data. The coastal line in 2007 and 2012 was extracted by manufacturing Digital Surface Model (DSM) with Aviation LiDAR materials. For the coastal line in 2009 and 2010, Normalized Difference Vegetation Index (NDVI) method was used to extract the KOMPSAT-2 image selected after considering tide level and wave height. The change rate of the coastal line is varied in line with the forms of the observation target but most of topography shows a tendency of being eroded as time goes by. Compared to the relatively monotonous beach of Taean, the gravel and rock has very complex form. Therefore, there are more errors in extraction of coastlines and the combination of transect and shoreline, which affect overall changes. Thus, we think the correction of the anomalies caused by these properties is required in the future research.

Characteristics of Wave-induced Currents using the SWASH Model in Haeundae Beach (SWASH 모형을 이용한 해운대 해수욕장의 해빈류 특성)

  • Kang, Min Ho;Kim, Jin Seok;Park, Jung Kyu;Lee, Jong Sup
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.382-390
    • /
    • 2015
  • To simulate a complicated hydrodynamic phenomena in the surf zone, the SWASH model is used in Haeundae Beach. The SWASH model is well known as a model competing with the Boussinesq-type model in terms of near shore waves and wave-induced currents modelling. This study is aimed to the detailed analysis of seasonal waves and wave-induced current simulation in Haeundae Beach, where the representative seasonal wave conditions was obtained from hourly measured wave data in 2014 by Korea Hydrographic and Oceanographic Administration( KHOA). Incident wave conditions were given as irregular waves by JONSWAP spectrum. The calculated seasonal wave-induced current patterns were compared with the field observation data. In summer season, a dominant longshore current toward the east of the beach appears due to the effect of incident waves from the South and the bottom bathymetry, then some rip currents occurs at the central part of the beach. In the winter season, ESE incident waves generates a strong westward longshore currents. However, a weak eastward longshore currents appears at the restricted east side areas of the beach.

Study on Physical Oceanographic Environments in the Coastal Sea of Chung-Moon, Cheju Island (제주도 중문 연안역의 물리해양환경에 대한 연구)

  • Hong, Chang-Su;Oh, Kyung-Hee;Pang, Ig-Chan
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.4
    • /
    • pp.211-217
    • /
    • 2001
  • Physical oceanographic environments in the coastal sea of Chung-Moon located in the south coast of Cheju Island, Korea, where water pollutions by growing tourism complex possibly start to influence on the ecological system, are studied with hydrographic data observed monthly during July 1997 to June 2000. Winter and summer characteristics are shown in December to April and June to October, respectively, and transitional characteristics are shown in May and November. Waters show 14{\sim}16^{\circ}C$ and 34${\sim}$34.7 psu in winter and $15{\sim}27^{\circ}C$ and 32${\sim}$34.3 psu in summer. It tells that Tsushima water distributes in the whole column in winter and in the lower layer in summer, and Yangtze coastal water appears in the surface water in summer. When the influence of Yangtze coastal water is strong, salinities below 30psu are shown. Stratification is formed in the depth of about 20 m from June to October, so that it is not shown in the near shore stations, of which the depth is about10 m. Isotherms and isohalines sometimes tend to be perpendicular to the coast line in the surface, which seems to show influences from the steam power plant near St. 1 and the sewage disposal plant near St. 3. During the observation period, temperatures in St. 1 are a little higher than those in St. 2 and St. 3 except for a couple of months in summer and salinities in St. 3 are mostly a little lower than those in St. 1 and St. 2. Their effects seem to be no more than $0.4^{\circ}C$ in a distance of 300 m and no more than 0.1 psu within a distance of 30 m.

  • PDF