• 제목/요약/키워드: Oceanic turbulence

검색결과 6건 처리시간 0.019초

Spreading of a Lorentz-Gauss Vortex Beam Propagating through Oceanic Turbulence

  • Liu, Dajun;Yin, Hongming;Wang, Guiqiu;Wang, Yaochuan
    • Current Optics and Photonics
    • /
    • 제3권2호
    • /
    • pp.97-104
    • /
    • 2019
  • Based on the extended Huygens-Fresnel principle, the analytical equation for a Lorentz-Gauss vortex beam propagating through oceanic turbulence has been derived. The spreading properties of a Lorentz-Gauss vortex beam propagating through oceanic turbulence are analyzed in detail using numerical examples. The results show that a Lorentz-Gauss vortex beam propagating through stronger oceanic turbulence will spread more rapidly, and the Lorentz-Gauss vortex beam with higher topological charge M will lose its initial dark center more slowly.

Polarization Properties of Quasi-Homogeneous Beams Propagating in Oceanic Turbulence

  • Chen, Feinan;Zhao, Qi;Chen, Yanru;Chen, Jingjing
    • Journal of the Optical Society of Korea
    • /
    • 제17권2호
    • /
    • pp.130-135
    • /
    • 2013
  • Based on the extended Huygens-Fresnel principle and generalized Stokes theory, the evolution of polarization properties of beams generated by quasi-homogenous (QH) sources propagating in clear oceanic water was studied by the use of the oceanic turbulence spatial spectrum function. The results show that the beams have similar polarization self-reconstructed behavior under different turbulence conditions in the far field, but if the propagation distance is not long enough, the degree of polarization (DOP) fluctuates with much more complexity than state of polarization (SOP) of QH beams. The self-reconstructed ability of DOP at the special distance in turbulence would get to the best value if the values of coherence of width were chosen suitably, but for SOP, it has no best value.

통계적 방법을 이용한 방사성 물질의 해양 확산 평가 (A Study on the Oceanic Diffusion of Liquid Radioactive Effluents based on the Statistical Method)

  • 김숭평;이경진
    • Journal of Radiation Protection and Research
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 1998
  • 영광 원전 지역에 적용될 수 있는 액체 방사성 물질의 확산 모델을 개발하였다. 영광에서의 해양 확산 조건은 매우 복잡하기 때문에 수치적 모델을 적용하는 것은 매우 어렵다. 따라서 비교적 단순하면서도 신뢰성 있는 미규제 지침 1.113에서 제시한 통계적 모델을 적용하였다. 이를 통해, 발전소 운전 조건이나, 피폭 경로에 따른 희석 인자를 계산할 수 있는 컴퓨터 코드를 개발하였다. 액체 방사성 물질의 확산에 대해서, 혼합 범위에 따라 근거리 혼합 모델과 원거리 혼합 모델로 구분하여 모델을 개발하였다. 근거리 혼합 현상은 부력과 초기 운동량 및 난류에 의해 결정된다. 원거리 혼합에서는 대기 중의 구름 확산과 유사하게 가우시안푸륨 모델을 적용할 수 있다. 서로 다른 피폭 경로에 대해 물리적으로 타당한 적분을 수행함으로서, 경로에 따른 희석 인자를 구할 수 있었다. 개발된 모델을 사용하여 계산한 결과에 의하면, 현행 영광 ODCM에 사용되는 희석 인자는 상당히 과평가되어 있음을 알 수 있다.

  • PDF

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • 제6권1호
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

海洋 亂流境界層內 斷續性의 流體力學的 意義 (FLUID DYNAMIC IMPLICATIONS OF THE INTERMITTENCY OF TURBULENT MOMENTUM TRANSPORT IN THE OCEANIC TURBULENT BOUNDARY LAYER)

  • 정종율;체스터이그로쉬
    • 한국해양학회지
    • /
    • 제18권2호
    • /
    • pp.104-110
    • /
    • 1983
  • 海洋 亂流境界層內 亂流運動量輸送의 斷續性 現象에 對하여 그 本質을 把握 하고 流體力學的 인 의미를 규명하기 위한 영구를 기원했다.또한 단속성 현상과 작비현상의 상호관계도 아울러 연구했다. 본 연구를 통해 난류경계층내에서도 중간층에 속하는 z/h=0.067층에서는 단속성의 크기가 평균난류운동량 수송의 408배의 달하고 상부층 즉 z/h=0.1층에서는 270배에 달함이 밝혀져,이제까지 보고되었던 Gordon(1974)이나 Heathersaw(1974)의 30배의 월등히 크다는 것이 새로운 사실이다. 일부 학자들은 단속성현상을 자기현상의 반영 또는 자기의 유통계의 부딪혀 나타나는 현상이라고 해석한바 있으나 (Gordon,1974; Heathersaw,1974),본 연구에서 밝혀진바에 의하면,이는 마찰 Reynolds 수가>$10^{5}$인 실제해양의 난류경계층내 난류운동의 특징이라는 사실이다.

  • PDF