Journal of Korean Society of Coastal and Ocean Engineers
/
v.32
no.6
/
pp.384-395
/
2020
Breaking waves generated by wave shoaling in coastal areas have a close relationship with various physical phenomena in coastal regions, such as sediment transport, longshore currents, and shock wave pressure. Therefore, it is crucial to accurately predict breaker index such as breaking wave height and breaking depth, when designing coastal structures. Numerous scientific efforts have been made in the past by many researchers to identify and predict the breaking phenomenon. Representative studies on wave breaking provide many empirical formulas for the prediction of breaking index, mainly through hydraulic model experiments. However, the existing empirical formulas for breaking index determine the coefficients of the assumed equation through statistical analysis of data under the assumption of a specific equation. In this paper, we applied a representative linear-based supervised machine learning algorithms that show high predictive performance in various research fields related to regression or classification problems. Based on the used machine learning methods, a model for prediction of the breaking index is developed from previously published experimental data on the breaking wave, and a new linear equation for prediction of breaker index is presented from the trained model. The newly proposed breaker index formula showed similar predictive performance compared to the existing empirical formula, although it was a simple linear equation.
Although satellite-based sea surface temperature (SST) is advantageous for monitoring large areas, spatiotemporal data gaps frequently occur due to various environmental or mechanical causes. Thus, it is crucial to fill in the gaps to maximize its usability. In this study, daily SST composite fields with a resolution of 4 km were produced through a two-step machine learning approach using polar-orbiting and geostationary satellite SST data. The first step was SST reconstruction based on Data Interpolate Convolutional AutoEncoder (DINCAE) using multi-satellite-derived SST data. The second step improved the reconstructed SST targeting in situ measurements based on light gradient boosting machine (LGBM) to finally produce daily SST composite fields. The DINCAE model was validated using random masks for 50 days, whereas the LGBM model was evaluated using leave-one-year-out cross-validation (LOYOCV). The SST reconstruction accuracy was high, resulting in R2 of 0.98, and a root-mean-square-error (RMSE) of 0.97℃. The accuracy increase by the second step was also high when compared to in situ measurements, resulting in an RMSE decrease of 0.21-0.29℃ and an MAE decrease of 0.17-0.24℃. The SST composite fields generated using all in situ data in this study were comparable with the existing data assimilated SST composite fields. In addition, the LGBM model in the second step greatly reduced the overfitting, which was reported as a limitation in the previous study that used random forest. The spatial distribution of the corrected SST was similar to those of existing high resolution SST composite fields, revealing that spatial details of oceanic phenomena such as fronts, eddies and SST gradients were well simulated. This research demonstrated the potential to produce high resolution seamless SST composite fields using multi-satellite data and artificial intelligence.
Korean Journal of Agricultural and Forest Meteorology
/
v.14
no.1
/
pp.1-10
/
2012
Digital Forecast of the Korea Meteorological Administration (KMA) represents 5 km gridded weather forecast over the Korean Peninsula and the surrounding oceanic regions in Korean territory. Digital Forecast provides 12 weather forecast elements such as three-hour interval temperature, sky condition, wind direction, wind speed, relative humidity, wave height, probability of precipitation, 12 hour accumulated rain and snow, as well as daily minimum and maximum temperatures. These forecast elements are updated every three-hour for the next 48 hours regularly. The objective of this study was to construct Forest Fire Danger Rating Systems on the Korean Peninsula (FFDRS_KORP) based on the daily weather index (DWI) and to improve the accuracy using the digital forecast data. We produced the thematic maps of temperature, humidity, and wind speed over the Korean Peninsula to analyze DWI. To calculate DWI of the Korean Peninsula it was applied forest fire occurrence probability model by logistic regression analysis, i.e. $[1+{\exp}\{-(2.494+(0.004{\times}T_{max})-(0.008{\times}EF))\}]^{-1}$. The result of verification test among the real-time observatory data, digital forecast and RDAPS data showed that predicting values of the digital forecast advanced more than those of RDAPS data. The results of the comparison with the average forest fire danger rating index (sampled at 233 administrative districts) and those with the digital weather showed higher relative accuracy than those with the RDAPS data. The coefficient of determination of forest fire danger rating was shown as $R^2$=0.854. There was a difference of 0.5 between the national mean fire danger rating index (70) with the application of the real-time observatory data and that with the digital forecast (70.5).
Park, Myung-Hee;Song, Ji-Young;Han, In-Seong;Lee, Joon-Soo
Journal of the Korean Society of Marine Environment & Safety
/
v.25
no.7
/
pp.881-897
/
2019
We reconstructed and digitized the National Institute of Fisheries Science (NIFS) Serial Oceanographic observations (NSO) and Coastal Oceanographic observations (NCO) data attained prior to 1961 through historical oceanographic observation data rescue projects. Increasing trends of long-term sea surface temperature (SST) were shown from the NSO data of 21 available stations for the past 80 to 92 years. In general agreement with previous research results used in the data of the past 50 years, we calculated the rate of temperature rise. As a result of analyzing the spatial distribution of SST change rate in the Korean of shore region using selected oceanographic data, the West Sea and South Sea showed a higher tendency of temperature rise in the offshore area than in the coastal area. However, unlike the results of previous studies, the East Sea (Gangwon Line and Ulsan Line) showed a lower water temperature rise than the coastal stations. Annual fluctuations of NCO's SST data from 1989 to 1998 for three stations representing the East Sea, South Sea, and West Sea, (Jumunjin, Geomundo and Budo, respectively) revealed that the East Sea showed the highest SST increase for the 10 years. The increases were 1.63 ℃ at Jumunjin, 1.16 ℃ at Geomundo, and 0.79 ℃ at Budo. As a result of the investigation, it can be concluded that SST is repeatedly rising and falling with a period of 3 ~ 6 years. Especially, since the 1980s, most of the stations show positive anomalies of SST. Lastly, to understand ocean_atmosphere interactions, we analyzed the correlations between SST of the NCO stations and air temperature around them and the results were 0.76 for the South Sea (Geomundo), 0.34 for the West Sea (Budo), and 0.32 for the East Sea (Jumunjin) with the highest correlation in the South Sea.
In order to provide quantitative control of the standard products of Geostationary Ocean Color Imager (GOCI), on-board radiometric correction, atmospheric correction, and bio-optical algorithm are obtained continuously by comprehensive and consistent calibration and validation procedures. The calibration/validation for radiometric, atmospheric, and bio-optical data of GOCI uses temperature, salinity, ocean optics, fluorescence, and turbidity data sets from buoy and platform systems, and periodic oceanic environmental data. For calibration and validation of GOCI, we compared radiometric data between in-situ measurement and HyperSAS data installed in the Ieodo ocean research station, and between HyperSAS and SeaWiFS radiance. HyperSAS data were slightly different in in-situ radiance and irradiance, but they did not have spectral shift in absorption bands. Although all radiance bands measured between HyperSAS and SeaWiFS had an average 25% error, the 11% absolute error was relatively lower when atmospheric correction bands were omitted. This error is related to the SeaWiFS standard atmospheric correction process. We have to consider and improve this error rate for calibration and validation of GOCI. A reference target site around Dokdo Island was used for studying calibration and validation of GOCI. In-situ ocean- and bio-optical data were collected during August and October, 2009. Reflectance spectra around Dokdo Island showed optical characteristic of Case-1 Water. Absorption spectra of chlorophyll, suspended matter, and dissolved organic matter also showed their spectral characteristics. MODIS Aqua-derived chlorophyll-a concentration was well correlated with in-situ fluorometer value, which installed in Dokdo buoy. As we strive to solv the problems of radiometric, atmospheric, and bio-optical correction, it is important to be able to progress and improve the future quality of calibration and validation of GOCI.
The Global Ocean Data Assimilation and Prediction System (GODAPS) in operation at the KMA (Korea Meteorological Administration) is introduced. GODAPS consists of ocean model, ice model, and 3-d variational ocean data assimilation system. GODAPS assimilates conventional and satellite observations for sea surface temperature and height, observations of sea-ice concentration, as well as temperature and salinity profiles for the ocean using a 24-hour data assimilation window. It finally produces ocean analysis fields with a resolution of 0.25 ORCA (tripolar) grid and 75-layer in depth. This analysis is used for providing a boundary condition for the atmospheric model of the KMA Global Seasonal Forecasting System version 5 (GloSea5) in addition to monitoring on the global ocean and ice. For the purpose of evaluating the quality of ocean analysis produced by GODAPS, a one-year data assimilation experiment was performed. Assimilation of global observing system in GODAPS results in producing improved analysis and forecast fields with reduced error in terms of RMSE of innovation and analysis increment. In addition, comparison with an unassimilated experiment shows a mostly positive impact, especially over the region with large oceanic variability.
Satellite sea surface temperature (SST) composites provide important data for numerical forecasting models and for research on global warming and climate change. In this study, six types of representative SST composite database were collected from 2007 to 2018 and the characteristics of spatial structures of SSTs were analyzed in seas around the Korean Peninsula. The SST composite data were compared with time series of in-situ measurements from ocean meteorological buoys of the Korea Meteorological Administration by analyzing the maximum value of the errors and its occurrence time at each buoy station. High differences between the SST data and in-situ measurements were detected in the western coastal stations, in particular Deokjeokdo and Chilbaldo, with a dominant annual or semi-annual cycle. In Pohang buoy, a high SST difference was observed in the summer of 2013, when cold water appeared in the surface layer due to strong upwelling. As a result of spectrum analysis of the time series SST data, daily satellite SSTs showed similar spectral energy from in-situ measurements at periods longer than one month approximately. On the other hand, the difference of spectral energy between the satellite SSTs and in-situ temperature tended to magnify as the temporal frequency increased. This suggests a possibility that satellite SST composite data may not adequately express the temporal variability of SST in the near-coastal area. The fronts from satellite SST images revealed the differences among the SST databases in terms of spatial structure and magnitude of the oceanic fronts. The spatial scale expressed by the SST composite field was investigated through spatial spectral analysis. As a result, the high-resolution SST composite images expressed the spatial structures of mesoscale ocean phenomena better than other low-resolution SST images. Therefore, in order to express the actual mesoscale ocean phenomenon in more detail, it is necessary to develop more advanced techniques for producing the SST composites.
Journal of the Korean Society of Fisheries and Ocean Technology
/
v.26
no.2
/
pp.151-166
/
1990
Using the data observed on the Oshoro-maru from November 4 to November 12, 1989 in the East China Sea, the oceanographic conditions were investigated. The results are as follows: The oceanographic condition of surface layer was divided into two regions. One was the Tsushima Current Waters and the other was the China Coastal Waters. The oceanic front was formed between above two waters. Tsushima Current Waters had high temperature ranging 22~24$^{\circ}C$, high salinity ranging 33.5~34.5$\textperthousand$ and low D.O less than 4.5ml/l. And China Coastal Waters had low temperature ranging 18~2$0^{\circ}C$, low salinity less than 23.0$\textperthousand$ and high D.O ranging 4.0~5.0ml/l. In the case of the bottom layer, Tsushima Current Waters and China Coastal Waters appeared the same as the surface layer. In addition, the Yellow Sea Bottom Cold Waters and the Southern Bottom Waters of East China Sea distributed together with two surface waters above. The was temperature ranging 15~19$^{\circ}C$, salinity 34.5$\textperthousand$ and low D.O ranging 2.0~3.5ml/l and that was temperature less than 1$0^{\circ}C$, salinity less than 33.3$\textperthousand$ and high D,O greater than 4.5ml/l. The waters of intermediate characteristics between China Coastal Waters and Tsushima Current Waters seem to be resulted from the mixing occurred between the above tow waters, and it had temperature of 20.5~22.$0^{\circ}C$, salinity of 32.3~33.3$\textperthousand$.
The Sea Surface Temperature (SST) is one of the most important oceanic environmental factors in determining the change of marine environments and ecological activities. Satellite thermal infrared images can be effective for understanding the global trend of sea surface temperature due to large scale. However, their low spatial resolution caused some limitations in some areas where complicated and refined coastal shapes due to many islands are present as in the Korean Peninsula. The coastal ocean is also very important because human activities interact with the environmental change of coastal area and most aqua farming is distributed in the coastal ocean. Thus, low-cost airborne thermal infrared remote sensing with high resolution capability is considered for verifying its possibility to extract SST and to monitor the changes of coastal environment. In this study, an airborne thermal infrared system was implemented using a low-cost and ground-based thermal infrared camera (FLIR), and more than 8 airborne acquisitions were carried out in the western coast of the Korean Peninsula during the periods between May 23, 2012 and December 7, 2013. The acquired thermal infrared images were radiometrically calibrated using an atmospheric radiative transfer model with a support from a temperature-humidity sensor, and geometrically calibrated using GPS and IMU sensors. In particular, the airborne sea surface temperature acquired in June 25, 2013 was compared and verified with satellite SST as well as ship-borne thermal infrared and in-situ SST data. As a result, the airborne thermal infrared sensor extracted SST with an accuracy of $1^{\circ}C$.
Estuary sand bar of Namdaecheon Stream is located in Yangyang-gun, Gangwon-do in Korea. This unique place is situated between end of Namdaecheon Stream and East Sea. It is an important environment area of the global ecosystem from the transition zone of land and marine environments by forming a variety of coastal circumstance. Some endemic species should be protected which is appearing in the Namdaecheon Stream because of preservation for future generations. Especially, the salmon return to this stream as adults in order to breed which is more than 70 % of the salmon in Korea peninsular. The monitoring of estuary sand bar is need to analyze ecological environment and sustainable development with time. First of all we represents a different shape of estuary sand bar of Namdaecheon Stream from 1984 to 2015 using Landsat satellite imagery series. Particularly movement of the "tidal inlet" is most important factor to investigate the condition of the change for estuary sand bar. The location of tidal inlet is compared with precipitation, height of tide and oceanic current data according to time variation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.