• Title/Summary/Keyword: Oceanic current

Search Result 163, Processing Time 0.026 seconds

SEASONAL VARIATION OF THE OCEANIC WATER INTRUSIONS INTO KAGOSHIMA BAY DERIVED FROM THE SATELLITE SST AND CHL-A IMAGES

  • Hosotani, Kazunori
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.61-64
    • /
    • 2008
  • Seasonal distribution of the oceanic water intrusion was investigated using satellite SST (sea surface temperature) and chl-a (chlorophyll-a) images taken by the MODIS Aqua sensor. The warm water mass emanating periodically from the meandering Kuroshio Current brings the oceanic water intrusion, known as the 'Kyucho' phenomenon, into Kagoshima bay during the winter. Satellite SST images and buoy robot data show that this warm water intrusion has the characteristics of a semigeostrophic gravity current influenced by the Coriolis effect. However, it is difficult to find the oceanic water intrusion during the summer season considering that it is accompanied by thermal stratification, and SST shows almost the same temperature between the inner side of the bay and the ocean. In this research, the satellite chl-a images taken by MODIS Aqua were employed instead of SST images to reveal the oceanic water intrusion in each season. The enclosed bay has the tendency to undergo eutrophication caused by organic materials from land and differences in chl-a concentration of the bay water and the oceanic water. As a result, distribution of low concentration chl-a with oceanic water intrusion in summer season shows almost the same pattern in winter season. On the other hand, in spring season, both SST and chl-a images are available to differentiate the oceanic water intrusion. Therefore, applying the suitable satellite sensor images for each season is effective in the monitoring of oceanic water intrusion. Moreover, in this area, SST and chl-a distribution reveal not only the oceanic water intrusion into Kagoshima bay but also the intrusion at Fukiage seashore facing East China Sea.

  • PDF

Simulation of the Temperature and Salinity Along $36^{\circ}N$ in the Yellow Sea with a Wave-Current Coupled Model

  • Qiao, Fangli;Ma, Ji-An;Yang, Yong-Zeng;Yuan, Yeli
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.35-45
    • /
    • 2004
  • Based on the MASNUM wave-current coupled model, the temperature and salinity structures along $36^{\circ}N$ in the Yellow Sea are simulated and compared with observations. Both the position and strength of the simulated thermocline are similar to data analysis. The wave-induced mixing is strongest in winter and plays a key role in the formation of the upper mixed layer in spring and summer. Numerical experiments suggest that in the coastal area, wave-induced mixing and tidal mixing control the vertical structure of temperature and salinity.

Analysis of Integrated Oceanic Current Maps in Science and Earth Science Textbooks of Secondary School Based on 2015 Revised Curriculum (2015 개정 교육과정 기반 중등학교 과학 및 지구과학 교과서의 통합 해류도 분석)

  • Park, Kyung-Ae;Lee, Jae Yon;Park, Jae-Jin;Lee, Eunil;Byun, Do-Seong;Kang, Boon-Soon;Jeong, Kwang-Yeong
    • Journal of the Korean earth science society
    • /
    • v.41 no.3
    • /
    • pp.248-260
    • /
    • 2020
  • Oceanic current maps introduced in science and earth science textbooks can offer a valuable opportunity for students to learn about rapid climate change and the role of currents associated with the global energy balance problem. Previously developed oceanic current maps in middle and high school textbooks under the 2007 and 2009-revised national curriculum contained various errors in terms of scientific accuracy. To resolve these problems, marine experts have constructed a unified oceanographic map of the oceans surrounding the Korean Peninsula. Since 2010, this process has involved a continuous, long-term consultation procedure. By extensively gathering opinions and through verification process, a representative and scientific oceanic current map was eventually constructed. Based on this, the educational oceanic current maps, targeting the comprehension of middle and high school students, were developed. These maps were incorporated into middle and high school textbooks in accordance with the revised 2015 curriculum. In this study, we analyzed the oceanic current maps of five middle school science textbooks and six earth science textbooks that were published in high school in 2019. Although all the oceanic current maps in the textbooks were unified based on the proposed scientific oceanic current maps, there were problems such as the omission of certain oceanic currents or the use of a combination of dotted and solid lines. Moreover, several textbooks were found to be using incorrect names for oceanic currents. This study suggests that oceanic current maps, produced by integrating scientific knowledge, should be visually accurate and utilized appropriately to avoid students' misconception.

An Oceanic Current Map of the East Sea for Science Textbooks Based on Scientific Knowledge Acquired from Oceanic Measurements (해양관측을 통해 획득된 과학적 지식에 기반한 과학교과서 동해 해류도)

  • Park, Kyung-Ae;Park, Ji-Eun;Choi, Byoung-Ju;Byun, Do-Seong;Lee, Eun-Il
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.4
    • /
    • pp.234-265
    • /
    • 2013
  • Oceanic current maps in the secondary school science and earth science textbooks have played an important role in piquing students's inquisitiveness and interests in the ocean. Such maps can provide students with important opportunities to learn about oceanic currents relevant to abrupt climate change and global energy balance issues. Nevertheless, serious and diverse errors in these secondary school oceanic current maps have been discovered upon comparison with up-to-date scientific knowledge concerning oceanic currents. This study presents the fundamental methods and strategies for constructing such maps error-free, through the unification of the diverse current maps currently in the textbooks. In order to do so, we analyzed the maps found in 27 different textbooks and compared them with other up-to-date maps found in scientific journals, and developed a mapping technique for extracting digitalized quantitative information on warm and cold currents in the East Sea. We devised analysis items for the current visualization in relation to the branching features of the Tsushima Warm Current (TWC) in the Korea Strait. These analysis items include: its nearshore and offshore branches, the northern limit and distance from the coast of the East Korea Warm Current, outflow features of the TWC near the Tsugaru and Soya Straits and their returning currents, and flow patterns of the Liman Cold Current and the North Korea Cold Current. The first draft of the current map was constructed based upon the scientific knowledge and input of oceanographers based on oceanic in-situ measurements, and was corrected with the help of a questionnaire survey to the members of an oceanographic society. In addition, diverse comments have been collected from a special session of the 2013 spring meeting of the Korean Oceanographic Society to assist in the construction of an accurate current map of the East Sea which has been corrected repeatedly through in-depth discussions with oceanographers. Finally, we have obtained constructive comments and evaluations of the interim version of the current map from several well-known ocean current experts and incorporated their input to complete the map's final version. To avoid errors in the production of oceanic current maps in future textbooks, we provide the geolocation information (latitude and longitude) of the currents by digitalizing the map. This study is expected to be the first step towards the completion of an oceanographic current map suitable for secondary school textbooks, and to encourage oceanographers to take more interest in oceanic education.

Scientific Visualization of Oceanic Data (GIS정보를 이용한 해양자료의 과학적 가시화)

  • Im, Hyo-Hyuc;Kim, Hyeon-Seong;Han, Sang-Cheon;Seong, Ha-Keun;Kim, Kye-Yeong
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.195-196
    • /
    • 2006
  • Recently, there are increasing need to make a synthetic assessment about oceanic data which is collected over the various scientific field, in addition to just gathering oceanic data. In this study, we made a basic map using satellite image, aerial photo, multi-beam data, geological stratum data etc. And as well we are producing comprehensive SVT(Scientific Visualization Toolkit) which can visualize various kinds of oceanic data. These oceanic data include both survey data such as tidal height, tide, current, wave, water temperature, salinity, oceanic weather data and numeric modelling results such as ocean hydrodynamic model, wave model, erosion/sediment model, thermal discharged coastal water model, ocean water quality model. In this process, we introduce GIS(Geographic Information System) concepts to reflect time and spatial characteristics of oceanic data.

  • PDF

VHF Relay Network for Long Air-to-Ground Communication in Oceanic Flight Routes (대양항로에서 장거리 공대지통신을 위한 VHF Relay Network)

  • Koo, Jayeul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.3
    • /
    • pp.22-27
    • /
    • 2012
  • In oceanic flight routes, HF radio and satellite data links have been used for air-to-ground communication, but these systems have long propagation delay and low data throughput. In this paper, we propose a reliable system to overcome the weakness of current HF radio and satellite communication systems for oceanic aeronautical flight routes. The proposed scheme uses only one aeronautical VHF channel in multi-hop oceanic communication environments and supports a hybrid type of multiple access, which consists of random access and TDMA (Time Division Multiple Access) scheme. The proposed system improves performance on delay and throughput as an effective solution to communicate end-to-end on the oceanic flight routes and strengthens the reliability of oceanic aeronautical communication.

An Analysis on Observational Surface and upper layer Current in the Yellow Sea and the East China Sea

  • Kui, Lin;Binghuo;Tang, Yuxiang
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.187-195
    • /
    • 2002
  • The characteristics of surface circulation in the Yellow Sea and the East China Sea are discussed by analyzing a great deal of current data observed by 142 sets of mooring buoy and 58 sets of drifters trajectories collected in the Yellow Sea and the East China Sea through domestic and abroad measurements. Some major features are demonstrated as bellow: 1) Tsushima Warm Current flows away from the Kuroshio and has multiple sources in warm half year and comes only from Kuroshio surface water in cold half year. 2) Taiwan Warm Current comes mainly from the Taiwan Strait Water in warm half year and comes from the intruded Kuroshio surface water and branches near 27N in cold half year. 3) The Changjiang Diluted Water turns towards Cheju Island in summer and flows southward along the coastal line in winter. 4) The study sea area is an eddy developing area, especially in the southern area of Cheju Island and northern area of Taiwan.

A Numerical Study on the Wintertime Upwind flow of the Yellow Sen in an Idealized Basin

  • Kyung, Tae-Jung;Park, Chang-Wook;Oh, Im-Sang;Lee, Ho-Jin;Kang, Hyoun-Woo
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.91-107
    • /
    • 2002
  • The wintertime upwind flow in the Yellow Sea has been investigated through a series of two-dimensional numerical experiments in an idealized basin. A total of 10 experiments have been carried out to examine the effects of wind forcing, bottom friction and the presence of oceanic currents sweeping the shelf of the East China Sea. A spatially uniform steady and periodic wind stresses are considered along with comparison of linear and quadratic formulations. The wind-driven flow in the absence of oceanic current has been computed using Proudman open boundary condition (POBC), while the wind-driven current in the presence of oceanic current has been computed using Flather’s radiation condition (FOBC). The oceanic currents to be prescribed at the open boundary have been simulated by specifying uniform sea level gradients across the Taiwan Strait and the eastern ECS shelf, Calculations show that, as seen in Lee et al. (2000), oceanic flow little penetrates into the Yellow Sea in the absence of wind forcing unless a unrealistically low rate of bottom frictional dissipation is assumed. Both steady and time-periodic wind stresses invoke the upwind flow along the central trough of the Yellow Sea, independently of the presence of the oceanic current. The presence of oceanic currents very marginally alters the north-south gradient of the sea surface elevation in the Yellow Sea. Changes in the intensity and direction of the wind-induced mean upwind flow are hardly noticeable in the Yellow Sea but are found to be significant near Cheju Island where the gradient is reduced and therewith contribution of Ekman transport increases. In case of steady wind forcing circulation patterns such as two gyres on the slope sides, a cyclonic gyre on the western slope and an anticyclonic gyre on the eastern slope persist and the upwind flow composes part of the cyclonic gyre in the Yellow Sea. While in case of the time-periodic wind stress the appearance and disappearance of the patterns are repeated according to the time variation of the wind stress and the upwind flow accordingly varies with phase delay, mostly intensifying near the time when the wind forcing is approximately near the middle of the decaying stage.

An Analysis of Oceanic Current Maps of the Yellow Sea and the East China Sea in Secondary School Science Textbooks (중등학교 과학교과서의 황해 및 동중국해 해류도 분석)

  • Park, Kyung-Ae;Park, Ji-Eun;Choi, Byoung-Ju;Lee, Sang-Ho;Lee, Eunil;Byun, Do-Seong;Kim, Young-Taeg
    • Journal of the Korean earth science society
    • /
    • v.35 no.6
    • /
    • pp.439-466
    • /
    • 2014
  • Since the unification of the diverse oceanic current maps of the East Sea in secondary school science textbooks has recently been accomplished, there have been increasing requirements for the production of a current map of the Yellow Sea (YS) and the East China Sea (ECS). This study, as its first attempt, facilitated the prospective production process of the unified oceanic current maps in YS and ECS by analyzing the maps of scientific articles and those of the present textbooks as of 2014. First of all, the analogue current maps of the textbooks and scientific articles were digitalized to retrieve the characteristics of current maps quantitatively and to make intercomparison of the maps. The currents of both YS and ECS such as the Kuroshio Current, the Taiwan Warm Current, the Tsushima Warm Current, the Yellow Sea Warm Current, the Chinese Coastal Current, the Korea Coastal Current, and the Changjiang River Flow were selected and analyzed. We made 18 items to investigate the paths of the currents. Analyses of the oceanic current maps of secondary school science textbooks and scientific articles with respect to the selected criteria revealed that the current maps of the textbooks were considerably different from the up-to-date knowledge of the current maps acquired from the scientific articles. In addition, since the currents of YS and ECS have strong seasonality, we suggest that they should be presented with at least two current maps for summer and winter in the textbooks, which may go through active discussions among experts.

Spreading of a Lorentz-Gauss Vortex Beam Propagating through Oceanic Turbulence

  • Liu, Dajun;Yin, Hongming;Wang, Guiqiu;Wang, Yaochuan
    • Current Optics and Photonics
    • /
    • v.3 no.2
    • /
    • pp.97-104
    • /
    • 2019
  • Based on the extended Huygens-Fresnel principle, the analytical equation for a Lorentz-Gauss vortex beam propagating through oceanic turbulence has been derived. The spreading properties of a Lorentz-Gauss vortex beam propagating through oceanic turbulence are analyzed in detail using numerical examples. The results show that a Lorentz-Gauss vortex beam propagating through stronger oceanic turbulence will spread more rapidly, and the Lorentz-Gauss vortex beam with higher topological charge M will lose its initial dark center more slowly.