• Title/Summary/Keyword: Ocean renewable energy

Search Result 221, Processing Time 0.021 seconds

Application and Life Cycle Cost Analysis for Ice-rink using Seawater Heat Source Cooling System (해수 냉방시스템의 빙상경기장 적용 방안 및 LCC 분석)

  • Park, Jin-Young;Kim, Sam-Uel;Lee, Ho-Saeng;Kim, Hyeon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.50-55
    • /
    • 2013
  • On a plan for the Winter Olympics 2018, Korean government is in the process of the world's first use of ocean energy for the Olympic ice-rink. This technology will be applied to a seaside town and have possibility of an export industry. In this study, we researched facilities and system for P ice-rink that acts as a cultural center as well as a physical plant in Busan and provided the way that apply by seawater heat source. Also, existing system and seawater heat source system of P ice-rink was analyzed by the most commonly used life cycle cost analysis among economics methods. Such economics data for ice-rink using seawater will be utilized by a basic information.

Numerical and experimental study on hydrodynamic performance of multi-level OWEC

  • Jungrungruengtaworn, Sirirat;Reabroy, Ratthakrit;Thaweewat, Nonthipat;Hyun, Beom-Soo
    • Ocean Systems Engineering
    • /
    • v.10 no.4
    • /
    • pp.359-371
    • /
    • 2020
  • The performance of a multi-level overtopping wave energy converter (OWEC) has been numerically and experimentally investigated in a two-dimensional wave tank in order to study the effects of opening width of additional reservoirs. The device is a fixed OWEC consisting of an inclined ramp together with several reservoirs at different levels. A particle-based numerical simulation utilizing the Lattice Boltzmann Method (LBM) is used to simulate the flow behavior around the OWEC. Additionally, an experimental model is also built and tested in a small wave flume in order to validate the numerical results. A comparison in energy captured performance between single-level and multi-level devices has been proposed using the hydraulic efficiency. The enhancement of power capture performance is accomplished by increasing an overtopping flow rate captured by the extra reservoirs. However, a noticeably large opening of the extra reservoirs can result in a reduction in the power efficiency. The overtopping flow behavior into the reservoirs is also presented and discussed. Moreover, the results of hydrodynamic performance are compared with a similar study, of which a similar tendency is achieved. Nevertheless, the LBM simulations consume less computational time in both pre-processing and calculating phases.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Energy Conversion Using CFD

  • Prasad, Deepak;Kim, Chang-Goo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.594-599
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for different models. Observation of flow characteristics and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was used to simulate the waves and after obtaining the desired wave properties; the augmentation channel plus the front guide nozzle and rear chamber were integrated to the numerical wave tank. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall moved sinusoidally with the general function, x=asin$\omega$t The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code ANSYS-CFX.

  • PDF

Numerical Simulation on Dynamic Characteristics of Offshore Seaweed Culture Facility (외해 해조류 양식시설의 동적특성 해석)

  • Lee, Seonmin;Hwang, Hajung;Na, Won-Bae
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.7-15
    • /
    • 2013
  • Eco-friendly and sustainable seaweed biomass energy have been under the spotlight as the future of renewable energy. However, seaweed culture is primarily conducted inshore, with the research on offshore culture still in an early stage. For massive biomass production, a systematic engineering approach is required to devise offshore seaweed culture facilities rather than the conventional empirical ones. To establish the fundamental behavior of seaweed culture facilities, the dynamic characteristics of a seaweed culture facility were analyzed in the study. For this purpose, numerical analyses of the seaweed culture facility (a frame type) were carried out by using the hydrodynamic simulation program ANSYS-AQWA. For the analysis, environmental loads were considered using the wave spectra and co-linear current; mooring variables were selected as parameters; and time domain analyses were carried out to acquire the time series responses and eventually the dynamic characteristics. Finally, the mooring performance was evaluated. It was found that the motion could be controlled by adjusting the buoyancy and mooring slope.

A Study on the Application of Domestic ferry to a Battery Propulsion Ship connected with Photovoltaic System (태양광 발전시스템이 연계된 배터리 전기추진선박의 국내 유람선 적용에 관한 연구)

  • Hwang, Jun-Young;Jeon, Cheol-Hwan;Jeon, Hyeon-Min;Kim, Jong-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.945-952
    • /
    • 2019
  • The International Maritime Organization (IMO) adopted the International Convention on the Control of Ships' Air Pollutants and Discharge as it became interested in environmental issues such as global warming and air pollution. In addition, a special bill on the improvement of air quality, including in port areas, has recently been enacted in Korea to reduce the amount of fine dust generated. As part of such fine dust reduction measures, feasibility studies have been underway on converting diesel engines into battery electric propulsion systems that do not cause fine dust and emissions. Since the battery electric propulsion system can easily utilize renewable energy sources, and does not generate exhaust gas due to combustion of fuel, small coastal ferries with battery electric propulsion systems that use renewable energy have been operating in Europe and the U.S. for several years. However, they have not been introduced in Korea. Therefore, in this study, we selected small coastal ferries in Korea as target ferries, and performed simulations to study the applicability of electric propulsion with batteries linked to solar power systems. Based on the results, we want to confirm the applicability of battery electric propulsion.

The Development of Protocols for Equitable Testing and Evaluation in Ocean Energy - A Three-Year Strategy

  • Ingram, David M.;Villate, Jose Luis;Abonnel, Cyrille;Johnstone, Cameron
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.33-37
    • /
    • 2008
  • EquiMar (Equitable Testing and Evaluation of Marine Energy Extraction Devices in terms of Performance, Cost and Environmental Impact) is one of the first round of energy projects under the European Commissions 7th Framework Programme (FP7). The three year EquiMar project aims to deliver a suite of protocols for the evaluation of both wave and tidal converters, harmonizing testing and evaluation procedures across the wide range of available devices, accelerating adoption through technology matching and improving the understanding of both environmental and economic impacts associated with the deployment of devices. The EquiMar protocols will cover site selection, initial design, scaling up of designs, the deployment of arrays and environmental impact assessment as well as economic issues. EquiMar will build on existing protocols, e.g. UK DTI Marine Renewables Development Fund (MRDF) protocols for wave and tidal energy, and engage with international standards setting activities, e.g. IEC TC114.

The Feasibility Analysis for PungDo Tidal Current Power Generation using SeaGen 1.2MW(600kW×2) Turbine (SeaGen 1.2MW(600kW×2)급 터빈을 이용한 풍도조류발전 타당성 분석)

  • Park, Tae-Young;Kim, Han-Sung;Kim, Yun-Wan;Park, Joo-Il;Kim, Kyung-Su
    • Journal of Energy Engineering
    • /
    • v.22 no.4
    • /
    • pp.386-393
    • /
    • 2013
  • An feasibility analysis is performed for the tidal current power generation with the examination of the sea water speed distribution at Pungdo. In this analysis, the water speed distribution which is the key issue was obtained from the actual speed distribution data and results in "the annual current tidal power". Due to the lack of cost information, we applied EPRI data from the internet site instead of the actual information. The result could be used as a base data for the construction of current tidal power plant in the near future. And it is expected to provides good data for the Energy policy.

Study on Vertical Axis Water Turbine with Movable Dual Blades (가변형 이중 날개를 갖는 수직축 수류터빈에 대한 연구)

  • Kim, Do-Hyung;Ahn, Byoung-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.125-133
    • /
    • 2016
  • In this paper, we propose a vertical axis water turbine with dual blades. A parametric study was conducted using numerical analyses. First, a two-dimensional finite-volume analysis with a commercial code was used to find the pitch angle of the main blade under different tip speed ratio conditions. Second, we developed a potential-based panel method to find the best configuration of the inner blades. Experimental tests were conducted at the circulating water channel of Chungnam National University. Various configurations of the dual blades were considered, and their performances were comparatively investigated. The results showed that the turbine with movable dual blades produces a constant torque and tip speed ratio at various flow rates.

Tide and Tidal Current Characteristics and Tidal Current Power Generation in the Uldolmok Waterway (울돌목 조석-조류 특성 및 조류발전)

  • Kang, Sok-Kuh;Yum, Ki-Dai;Lee, Kwang-Soo;Park, Jin-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • The tidal pi lot plant is being built in the Uldolmok waterway using Its strong tidal current with maximum current of about 12knots, which is revealed from the first direct observation using ADCP, on February, 2002. a serious of field observations (for example, ADCP observation was tarried out both at February 2002 and September, 2003), along with numerical modeling, have been carried out over the last several years, in order to understand the tidal dynamics and to examine the related variables according to the tidal current power plant (TCPP) operation.

  • PDF

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF