• Title/Summary/Keyword: Ocean discharge

Search Result 423, Processing Time 0.028 seconds

Variations in subtidal surface currents observed with HF radar in the costal waters off the Saemangeum areas (새만금 연안역에서 HF radar에 의해 관측된 조하주기 표층해류의 변화)

  • Kim, Chang-Soo;Lee, Sang-Ho;Son, Young-Tae;Kwon, Hyo-Keun;Lee, Kwang-Hee;Choi, Byoung-Hy
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.1
    • /
    • pp.56-66
    • /
    • 2008
  • Subtidal surface currents are derived from HF radar measurements in the Saemangeum coastal ocean of the Yellow sea in July 2002 and from September to November 2004. The surface current field is analyzed to examine the effect of wind, river plume and coastline change on the spatial distribution and temporal variation of the surface currents. In July 2002, average wind speed was 0.5 m/s and freshwater discharge from the Keum River was $0.88{\times}10^7\;ton/day$. Temporal mean currents ($\overline{U}$) flow to the northwest with speed of $7{\sim}10\;cm/s$ near the Keum River estuary, to the west as fast as 13 cm/s near the opening gap of the Saemangeum $4^{th}$ dyke, and to the northwest off the Gogunsan-archipelago. This flow pattern is a result of the Keum River plume dispersal and tide-residual currents from the opening gap of the Saemangeum $4^{th}$ dyke. Time series of spatially-averaged current (<$U-\overline{U}$>) direction is highly (r=0.98) correlated with wind direction. From September to November 2004, the opening gap of the Saemangeum $4^{th}$ dyke was closed, northwesterly wind blew with speed of 2.5 m/s on average and the Keum River discharge was $1.19{\times}10^7\;ton/day$. Temporal mean current field ($\overline{U}$) has weak surface flow in most of the coastal ocean and relatively strong currents flow to the southwest with speed of 10 cm/s along the shape coastline of the Gogunsan-archipelago and the Saemangeum $4^{th}$ dyke. The strong flow is generated by the prevailing northwesterly wind which pushes the Keum River plume toward the Saemangeum $4^{th}$ dyke. The residual currents from the opening gap of the Saemangeum $4^{th}$ dyke disappeared and correlation coefficient between time series of spatially-averaged current () direction and the wind direction is 0.69.

Determining Spatial and Temporal Variations of Surface Particulate Organic Carbon (POC) using in situ Measurements and Remote Sensing Data in the Northeastern Gulf of Mexico during El $Ni\tilde{n}o$ and La $Ni\tilde{n}a$ (현장관측 및 원격탐사 자료를 이용한 북동 멕시코 만에서 El $Ni\tilde{n}o$와 La $Ni\tilde{n}a$ 기간 동안 표층 입자성 유기탄소의 시/공간적 변화 연구)

  • Son, Young-Baek;Gardner, Wilford D.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.2
    • /
    • pp.51-61
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration was measured in the Northeastern Gulf of Mexico on 9 cruises from November 1997 to August 2000 to investigate the seasonal and spatial variability related to synchronous remote sensing data (Sea-viewing Wide Field-of-view Sensor (SeaWiFS), sea surface temperature (SST), sea surface height anomaly (SSHA), and sea surface wind (SSW)) and recorded river discharge data. Surface POC concentrations have higher values (>100 $mg/m^3$) on the inner shelf and near the Mississippi Delta, and decrease across the shelf and slope. The inter-annual variations of surface POC concentrations are relatively higher during 1997 and 1998 (El Nino) than during 1999 and 2000 (La Nina) in the study area. This phenomenon is directly related to the output of Mississippi River and other major rivers, which associated with global climate change such as ENSO events. Although highest river runoff into the northern Gulf of Mexico Coast occurs in early spring and lowest flow in late summer and fall, wide-range POC plumes are observed during the summer cruises and lower concentrations and narrow dispersion of POC during the spring and fall cruises. During the summer seasons, the river discharge remarkably decreases compared to the spring, but increasing temperature causes strong stratification of the water column and increasing buoyancy in near-surface waters. Low-density plumes containing higher POC concentrations extend out over the shelf and slope with spatial patterns and controlled by the Loop Current and eddies, which dominate offshore circulation. Although river discharge is normal or abnormal during the spring and fall seasons, increasing wind stress and decreasing temperature cause vertical mixing, with higher surface POC concentrations confined to the inner shelf.

Regrowth Ability and Species Composition of Phytoplankton in International Commercial Ship's Ballast Water Berthed at Pusan and Daesan Ports (부산과 대산항에서 선박평형수에 유입된 식물플랑크톤의 종조성과 재성장능력)

  • Baek, Seung-Ho;Jang, Min-Chul;Shin, Kyoung-Soon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.2
    • /
    • pp.106-115
    • /
    • 2011
  • The aim of this study is to assess the importance of ballast water discharge as a vector for the introduction of exotic species into Pusan and Daesan Ports, Korea. We also examined to understand the impacts of environmental factors on the survival success of introduced species by ship's ballast water in laboratory experiments. Seven ship's ballast water originated from the coastal water of China (Taicang, Ningbo and Jinshan), Japan (Tokuyama, Moji and Akita), and Singapore. According to PCA (principal components analysis) analysis, environmental factor in the each ballast and shipside waters were different by bioregion. Based on cluster analysis, the phytoplankton community structures were distinguished for ballast water origin. Most of the major taxonomic groups were diatoms and, the others were dinoflagellate, silcoflagellate and several fresh-waters species. In particular, species number and standing crops of phytoplankton in the ballast tanks decreased with the increasing age ofballast water(r = -0.35 for standing crop; r = -0.63 for species number). In the laboratory study, although phytoplankton in ballast water treatment did not survive even in optimal temperature, the in vivo fluorescence of phytoplankton viability increased under the nutrient typical of shipside water and F/2 medium at $15^{\circ}C$ and $20^{\circ}C$. The diatoms species such as Skeletonema costatum and Thalassiosira pseudonana in ballast water were successfully regrown. On the salinity gradient experiments for Shui Shan (2) vessel, several freshwater species, brackish and marine species were successfully adapted. Of these, S.costatum was able to tolerate a wide range of salinities (10 to 30 psu) and its species-specific viability was suitable for colonization.

Water quality characteristics and spatial distribution of phytoplankton during dry and rainy seasons in Bunam Lake and Cheonsu Bay, Korea (부남호·천수만의 갈수기와 강우기 수질 오염 특성과 식물플랑크톤의 공간 분포 특성)

  • Lee, Minji;Seo, Jin Young;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.184-194
    • /
    • 2021
  • Since the construction of a dike in 1983, the water quality in the Bunam Lake has continued to deteriorate due to algal bloom caused by agricultural nutrient loading. Therefore, we evaluated the change in water quality and phytoplankton ecological characteristics in Bunam Lake and Cheonsu Bay, Korea. Water temperature, salinity, dissolved oxygen, chemical oxygen demand (COD), chlorophyll, and phytoplankton community were surveyed in April during the dry season and in July during the rainy reason. As a result, during the dry period, phytoplankton proliferated greatly and stagnated in the Bunam Lake while a very high population of cyanobacteria Oscillatoria spp. (8.61×107 cells L-1) was recorded. Most of the nutrients, except, nitrate and nitrite, were consumed due to the large growth of phytoplankton. However, during the rainy period, concentrations of ammonia, phosphate, silicate, nitrate, and nitrite, were very high towards the upper station due to the inflow of fresh water. Cyanobacteria Oscillatoria and Microcystis spp. were dominant in the Bunam Lake during the rainy period. Even in the Cheonsu Bay, cyanobacteria dominated due to the effect of discharge and diatoms, such as, Chaetoceros spp. and Eucampia zodiacus, which also proliferated significantly due to increased levels of nutrients. Since the eutrophication index was above 1 in Bunam Lake, it was classified as eutrophic water and the Cheonsu Bay was classified as eutrophic water only during the rainy season. In addition, a stagnant seawater-derived hypoxia water mass was observed at a depth of8m in the Bunam Lake adjacent to the tide embankment and the COD concentration reached 206 mg L-1 in the bottom layer at B3. Based on this result, it is considered that the water quality will continue to deteriorate if organic matters settle due to continuous inflow of nutrients and growth of organisms while the bottom water mass is stagnant.

Local Winds Effects on the Water Surface Variation at the Shallow Estuary, Mobile Bay (해수순환모델(FVCOM)을 이용한 하구의 조위 변화에 미치는 국부적 바람의 영향)

  • Lee, Jungwoo;Yun, Sang-Leen;Oh, Hye-Cheol;Kim, Seog-Ku;Lee, Jun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.8
    • /
    • pp.570-578
    • /
    • 2014
  • A three-dimensional ocean circulation model was applied to a shallow estuary, Mobile Bay, to study local wind setup and setdown. Tides started from the northern Gulf of Mexico propagates up to the Mobile River system which is located in the north of the Mobile Bay. However, the tides started in the south of Mobile Bay were distorted when travelling upstream while affected by river discharge and local winds. The water surface elevation was less/over predicted responding north/south winds, respectively, when winds only at the Dauphin Island station (DPI) were used. However, the model predicted water surface elevation better when using two local winds from DPI and Mobile Downtown Airport (MDA). Wind speeds were greatly reduced (~ 88%) in about 43 km distance between DPI and MDA, and the canopy effects may be the reason for this. For this reason, the local winds are greatly responsible for local surface elevation setup and setdown especially at the shallow estuary like Mobile Bay.

Study on Sludge Reduction by Sludge Solubilization and Change of Operation Conditions of Sewage Treatment Process (하수슬러지 가용화와 하수처리 운전조건 개선을 통한 하수슬러지 발생저감 연구)

  • Choi, In-Su;Jung, Hoe-Suk;Han, Ihn-Sup
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.12
    • /
    • pp.1113-1122
    • /
    • 2009
  • In order to find the way to solve the problem of sewage sludge discharge into the ocean, the sludge solubilization by ultrasonic and the improvement methods of wastewater treatment process were studied. In the membrane bioreactor the sludge retention time was stepwise increased from 5.1 day to 442 days where the biomass average concentration has been increased from $c_B$=3.4 $gTSSL^{-1}$ to $c_B$=14.5 $gTSSL^{-1}$ respectively. At the same time, the biomass yield coefficients were reduced from 0.5-0.7 at SRT=5.1 day to 0.005-0.007 at SRT=442 days which means the reduction of sludge production. Oxygen mass transfer coefficients and ${\alpha}$-factor were investigated with changing stirrer speed to find the relation between the high biomass concentration and aeration efficiency in the propeller loop reactor. As a result of sludge solubilization, the solubilization of sludge by ultrasound was increased with increasing energy input and it led to improved anaerobic digestion rate with more biogas production than that of nonsolubilized sewage sludge.

Changes of Tissue N Content and Community Structure of Macroalgae on Intertidal Rocky Shores in Tongyeong Area due to Sewage Discharge (통영 지역의 암반 조간대에서 배출수 유입으로 인한 해조 군집 구조와 엽체 내 질소 함량의 변화)

  • Kang, Yun-Hee;Park, Sang-Rul;Oak, Jung-Hyun;Lee, Jin-Ae;Chung, Ik-Kyo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.3
    • /
    • pp.276-283
    • /
    • 2009
  • Enrichment in nutrients coming from urban sewage outfalls can lead to eutrophication in coastal areas, which can also change the species composition and community structure of macro algal communities. We investigated the structure of the macro algal community within three rocky shores in order to assess any possible differences in their characteristics. Site 1 was located near Tongyeong city's sewage outfall, Site 2 was located near a public beach area, and Site 3 faced open channel of the Ocean. All three sites were located within the same stretch of the coast, where Site 2 was located between sites 1 and 3. We measured the nutrient concentration in water and the tissue nitrogen content in macro algae samples. Nutrients in the water column surrounding site 1 were high in ammonium ($30.2\pm1.8{\mu}M$), nitrate ($26.2{\pm}0.1{\mu}M$), and phosphate ($2.7{\pm}0.1{\mu}M$) content, and were characterized by low numbers of macroalgal species and species and a low species diversity index. In contrast, site 3 exhibited relatively low nutrient concentration levels and a high number of macroalgal species and a high species diversity index. Comparative analysis showed that the tissue nitrogen content of macroalgae were significantly (P<0.05) affected by the nutrient concentration in the water column. The tissue nitrogen content of green algae within site 1 was higher than the others sites. However, the tissue nitrogen content of brown algae was similar at all three sites. Thus, the tissue nitrogen content of macro algae and the macro algal community structure of intertidal rocky shores were dependent on location and the performance of macroalgal communities was dependent on water quality.

Recent Trends of Vessel-Source Pollution (선박 기인 오염물의 처리동향 및 대책)

  • Park, Sang-Ho;Kim, In-Soo
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.97-104
    • /
    • 2006
  • Though stringent guidelines are in place to protect the harbor environment, pollution from ships, from the ports terminals. Discharge from the ballast tanks of ships, though illegal, does occur. Such vessels, arriving from distant ports of call, can introduce exotic species of plants and animals, causing disruption of the local food web. Discharges rich in nitrogen can generate the rapid growth of plankton, eventually leading to a condition known as red tide that is lethal to some coastal organisms. In addition to the harbor's negative effects on marine organisms, the diesel engines of the ships and the trucks that haul cargo to and from the ports release large volumes of diesel exhaust into the atmosphere. IMO(International Maritime Organization) is strongly proceeding with adoption of a new maritime environment convention and coming into effect for regulation enhancement about the pollutants which are happened in a ship recently. Study about the conventions that our country currently comes into effect, and there is during forwarding and correspondence must be performed effectively. In this paper, International convention on the control of harmful Anti-Fouling system on ship, Ballast water management, Prevention of air pollution from ships, treat a main pending problem in ocean related environmental regulation convention.

  • PDF

Mixing Zone Analysis on Outfall Plume considering Influence of Temperature Variation (수온 변화의 영향을 고려한 방류관 플룸의 혼합역 분석)

  • Kim Ji-Yeon;Lee Joong-Woo
    • Journal of Navigation and Port Research
    • /
    • v.28 no.10 s.96
    • /
    • pp.947-953
    • /
    • 2004
  • As a large scale port development in coastal waters proceeds step by step and populations in the vicinity of port are getting increased, the issue on 'how to dispose the treated municipal water and wastewater in harbor' brings peoples' concern. The submarine outfall system discharges the primary or secondary treated effluent at the coastline or in deep water, or between these two. The effluent, which has a density similar to that of fresh water, rises to the sea surface forming plume or jet, together with entraining the surrounding sea water and becomes very dilute. We intended in this paper to investigate the impact on dilution of effluent and the behavior of flume under the conditions of the seasonal and spatial temperature variations, which have not been noticeable in designing effective marine outfall system. To predict and analyze the behaviour and dilution characteristics of plume not just with the effluent temperature, but also with the seasonal variation of temperature of surround water, CORMIX( Cornell Mixing Zone Expert System)-GI have been applied. The results should be used with caution in evaluation the mixing zone characteristics of discharged water. We hope to help for the effective operation of outfall system, probable outfall design, protection of water quality, and warm water discharges from a power plant, etc.

Sediment Provenance of Southeastern Yellow Sea Mud Using Principal Component Analysis (주성분분석법을 활용한 황해 남동 이질대 퇴적물의 기원지 연구)

  • Cho, Hyen Goo;Kim, Soon-Oh;Lee, Yun Ji;Ahn, Sung Jin;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.107-114
    • /
    • 2014
  • In this study, we tried to determine the origin of fine-grained sediments in Southeastern Yellow Sea Mud patch (SEYSM) using principal component analysis coupled with semi-quantitative X-ray diffraction analysis for 4 major clay minerals. We used 51 marine surface sediments from SEYSM and 33 surface sediments of rivers flowing into the Yellow Sea. We made bioplot diagram using R program with principal component 1 and component 2 because the two components might contain about 98% of all data. The content of each clay mineral in the south and north regions of SEYSM are almost similar. In the biplot, SEYSM sediments distribute close to Korean rivers sediments than Huanghe and Changjiang sediments. Based on these results, we suggest that SEYSM is originated from the Korean rivers sediments. The higher accumulation rate in the SEYSM compared to the sediment discharge from neighboring Korean rivers can be explained by erosion and reworking of surface sediments in this area. The principal component analysis can be used for the provenance research of marine sediments around the Korean Peninsula.