• 제목/요약/키워드: Ocean circulation

Search Result 515, Processing Time 0.024 seconds

Comparison of Data Assimilation Methods in a Regional Ocean Circulation Model for the Yellow and East China Seas (자료동화 기법에 따른 황·동중국해 지역 해양순환모델 결과 비교)

  • Lee, Joon-Ho;Moon, Jae-Hong;Choi, Youngjin
    • Ocean and Polar Research
    • /
    • v.42 no.3
    • /
    • pp.179-194
    • /
    • 2020
  • The present study aims to evaluate the effects of satellite-based SST (OSTIA) assimilation on a regional ocean circulation model for the Yellow and East China Seas (YECS), using three different assimilation methods: the Ensemble Optimal Interpolation (EnOI), Ensemble Kalman Filter (EnKF), and 4-Dimensional Variational (4DVAR) techniques, which are widely used in the ocean modeling communities. The model experiments show that an improved initial condition by assimilating the SST affects the seasonal water temperature and water mass distributions of the YECS. In particular, the SST data assimilation influences the temperature structures horizontally and vertically in winter, thereby improving the behavior of the YS warm current water. This is due to the fact that during wintertime the water column is well mixed, which is directly updated by the SST assimilation. The model comparisons indicate that the SST assimilation can improve the model performance in resolving the subsurface structures in wintertime, but has a relatively small impact in summertime due to the strong stratification. The differences among the different assimilation experiments are obvious when the SST was sharply changed due to a typhoon passage. Overall, the EnKF and 4DVAR show better agreement with the observations than the EnOI. The relatively low performance of EnOI under storm conditions may be related with a limitation of EnOI method whereby an analysis is obtained from a number of climatological fields, and thus the typhoon-induced SST changes in short-time scales may not be adequately reflected in the data assimilation.

Evaluation of North Pacific Intermediate Water Simulated by HadGEM2-AO (HadGEM2-AO의 북태평양 중층수 모의 성능 평가)

  • Min, Hong Sik;Yim, Bo Young
    • Ocean and Polar Research
    • /
    • v.37 no.4
    • /
    • pp.265-278
    • /
    • 2015
  • We analyzed the North Pacific Intermediate Water (NPIW) that was simulated in 25 coupled general circulation models (CGCMs) using historical and Representative Concentration Pathway 4.5 (RCP4.5) scenario experiments of Coupled Model Intercomparison Project Phase 5 (CMIP5), focusing on the evaluation of the performance of HadGEM2-AO. A large inter-model diversity in salinity, density, and depth of the NPIW exists even though the multi-model ensemble mean (MME) is comparable to observations. It was found that the depth of the NPIW tends to be deeper in the models in which the NPIW is relatively saltier. HadGEM2-AO simulates the lightest NPIW having the lowest salinity at shallower depth, compared with other CGCMs. Future projections of the NPIW show that the temperature of the NPIW increases, but the density decreases in all CMIP5 models. It was shown that the salinity of the NPIW decreases in most models and the decrease tends to be larger in models simulating the lighter NPIW. The HadGEM2-AO projects moderate changes in the temperature and density of the NPIW out of the CMIP5 models.

Responses of the Ross Sea to the Climate Change: Importance of observations in the Ross Sea, Antarctica (기후변화에 따른 남극 로스해 반응에 관한 고찰: 남극 로스해 관측의 중요성)

  • Yoon, Seung-Tae
    • Ocean and Polar Research
    • /
    • v.44 no.1
    • /
    • pp.69-82
    • /
    • 2022
  • The Ross Sea, Antarctica plays an important role in the formation of Antarctic Bottom Water (AABW) which is the densest water mass in global thermohaline circulation. Of the AABW, 25% is formed in the Ross Sea, and sea ice formation at the polynya (ice-free area) developed in front of ice shelves of the Ross Sea is considered as a pivotal mechanism for AABW production. For this reason, monitoring the Ross Sea variations is very important to understand changes of global thermohaline circulation influenced by climate change. In addition, the Ross Sea is also regarded as a natural laboratory in investigating ice-ocean interactions owing to the development of the polynya. In this article, I introduce characteristics of the Ross Sea described in previous observational studies, and investigate variations that have occurred in the Ross Sea in the past and those taking place in the present. Furthermore, based on these observational results, I outline variations or changes that can be anticipated in the Ross Sea in the future, and make an appeal to researchers regarding the importance and necessity of continuous observations in the Ross Sea.

A Study of Transient Estuarine Circulation in the Chunsu Bay, Yellow Sea: Impact of Freshwater Discharge by Artificial Dikes

  • Jeong, Kwang-Young;Ro, Young Jae;Kang, Tae Soon;Choi, Yang Ho;Kim, Changsin;Kim, Baek Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.3
    • /
    • pp.242-253
    • /
    • 2020
  • This study examined the ef ects of freshwater discharge by artificial dikes from the Kanwol and Bunam lakes on the dynamics in the Chunsu Bay, Yellow Sea, Korea, during the summer season based on three-dimensional numerical modeling experiments. Model performances were evaluated in terms of skill scores for tidal elevation, velocity, temperature, and salinity and these scores mostly exceeded 90 %. The variability in residual currents before and after the freshwater discharge was examined. The large amount of lake water discharge through artificial dikes may result in a dramatically changed density field in the Chunsu Bay, leading to an estuarine circulation system. The density-driven current formed as a result of the freshwater inflow through the artificial dikes (Kanwol/Bunam) caused a partial change in the tidal circulation and a change in the scale and location of paired residual eddies. The stratification formed by strengthened static stability following the freshwater discharge led to a dramatic increase in the Richardson number and lasted for a few weeks. The strong stratification suppressed the vertical flux and inhibited surface aerated water mixing with bottom water. This phenomenon would have direct and indirect impacts on the marine environment such as hypoxia/anoxia formation at the bottom.

A Change of Large-scale Circulations in the Indian Ocean and Asia Since 1976/77 and Its Impact on the Rising Surface Temperature in Siberia

  • Lim, Han-Cheol;Jhun, Jong-Ghap;Kwon, Won-Tae;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.30 no.5
    • /
    • pp.660-670
    • /
    • 2009
  • This study examines the changes of an interdecadal circulation over the Asian continent to find cause of the surface warming in Siberia from 1958 to 2004. According to our study, there is a coherency between a long-term change of sea surface temperature in the Indian Ocean and the rapid increase of air temperature in Siberia since 1976/1977. In this study, we suggest that mean wind field changes induced by the positive sea surface temperature anomalies of the Indian Ocean since 1976/1977 are caused of inter-decadal variations in a large-scale circulation over the Asian continent. It also indicates that the inter-decadal circulation over the Asian continent is accompanied with warm southerly winds near surface, which have significantly contributed to the increase of surface temperature in Siberia. These southerly winds have been one of the most dominant interdecadal variations over the Asian continent since 1976/1977. In addition, we investigated the long-term trend mode of 850 hPa geopotential height data over the Asian continent from the Empirical Orthogonal Function (EOF) analysis for 1958-2004. In result, we found that there was an anomalously high pressure pattern over the Asian continent, it is called 'the Asian High mode'. It is thus suggested that the Asian High mode is another response of interdecadal changes of large-scale circulations over the Asian continent.

Optimization of the Propeller Steady Performance Behind Wake Field

  • Lee, Wang-Soo;Choi, Young-Dal;Kim, Gun-Do;Moon, Il-Sung;Lee, Chang-Sup
    • Journal of Ship and Ocean Technology
    • /
    • v.11 no.2
    • /
    • pp.10-25
    • /
    • 2007
  • With the sharp increase of the oil price, the issue of the energy saving requires even higher propulsive efficiency of the propellers. Traditionally the propellers have been designed with the criteria such as that of Lerbs optimum based on the lifting line theory and the empirical formulae of Lerbs and van Manen giving relations of the wake pitch with the wake non-uniformity. With the aid of the high speed computer, it is now possible to apply the time-consuming iterative approaches for the solution of the lifting surface problems. In this paper we formulate the variational problem to optimize the efficiency of the propeller operating in the given ship wake using the lifting surface method. The variational formulation relating the spanwise circulation distribution with the propulsive efficiency to be maximized is however non-linear in circulation distribution functions, thus the iterative method is applied to the quasi-linearized equations. The blade shape design also requires the iterative procedures, because the shape of the blade which is represented by the lifting surface is unknown a priori. The numerical code was validated with the DTNSRDC propeller 4119 which is well-known to be optimum in uniform inflow condition. In addition existing (well-designed) commercial propellers were selected and compared with the results of the open water tests and the self-propulsion tests.

Relationship between the variation of the Tsushima Warm Current and current circulation in the East Sea (동해에서 potential vorticity와 해류순환과의 관계)

  • Lee Chung Il;Cho Kyu Dae;Yun Jong-Hwui
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.89-92
    • /
    • 2004
  • Potential vorticity is useful to illustrate mechanism and distribution pattern of current circulation the upper layer in the East Sea is divided into three part following like surface layer, Tsushima Warm Current(TWC) layer. Potential vorticity shows well the meandering of the TWC and polar front and circulation cell ill the northern part of polar front.

  • PDF

Numerical studies on dynamic response of interactive system between atmosphere and ocean

  • Ryu, Chan-Su;Lee, Soon-Hwan
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.226-231
    • /
    • 2003
  • A coupling system of MM5 and POM using Stampi with different kinds of parallel computer is proposed and comparative numerical simulations of mesoscale wind induced by topography around East Sea/Sea of Japan are carried out. The results are as follows: 1) Strong horizontal conversion is induced by high mountain Pekdoo at its leeside. 2) The conversion winds at lee of high mountain are not clear in monthly and yearly mean NCEP-reanalysis because of coarse resolution of 1.86 degree by 1.86 degree. But Wind conversion is well simulated at atmosphere and ocean coupling system. And the conversion area of lee side of mountain is also agreed well with observed data of NSCAT launched in satellite ADEOS. 3) The surface ocean current is well correspondent with wind direction, induced by high mountains. And small different wind field information lead the different of particle distribution in numerical experiments of particle distribution on ocean surface.

  • PDF

Westerly Winds in the Southern Ocean During the Last Glacial Maximum Simulated in CCM3

  • Kim, Seong-Joong;Lee, Bang-Yong
    • Ocean and Polar Research
    • /
    • v.31 no.4
    • /
    • pp.297-304
    • /
    • 2009
  • We investigated the response of the westerly winds over the Southern Ocean (SO) to glacial boundary conditions for the Last Glacial Maximum using the CCM3 atmospheric general circulation model. In response to glacial boundary conditions, the zonally averaged maximum SO westerly winds weakened 20-35% and were displaced toward the equator by 3-4 degrees. This weakening of the SO westerly winds arose from a substantial increase in mean sea level pressure (MSLP) in the southern part of the SO around Antarctica relative to the northern part. The increase in MSLP around Antarctica is associated with a marked temperature reduction caused by an increase in sea ice cover and ice albedo feedback during the glacial time. The weakened westerly winds in the SO and their equator-ward displacement might play a role in reducing the atmospheric $CO_2$ concentration by reducing upwelling of the carbon rich deep water during the glacial time.

NUMERICAL MODEL FOR STORM SURGES

  • Yamashita, Takao;Bekku, Isao
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.1-4
    • /
    • 1995
  • Storm surges are defined as abnormal changes of sea surface elevation whose periods range from several hours to days. The generation mechanism is separated into two. One is sea water suction due to atmospheric depression and the other is wind-driven sea water circulation. The former is a forced long-wave motion which is accompanied by a typhoon. (omitted)

  • PDF