• 제목/요약/키워드: Ocean carrier

검색결과 313건 처리시간 0.019초

경항공모함 이·착함 성능평가 및 안전임무 수행범주 일관 해석 연구 (A Study on Short-Take-Off and Vertical Landing (STOVL) Performance Evaluation of a Light Aircraft Carrier and a Consistent Analysis of Safe Operating Envelope (SOE))

  • 홍사영;박동민;정재환;서민국;조석규
    • 대한조선학회논문집
    • /
    • 제61권2호
    • /
    • pp.125-134
    • /
    • 2024
  • The Safe Operating Envelope (SOE) combined with Short-Take-Off and Vertical Landing (STOVL) performance is an essential consideration of a light aircraft carrier for design of hull shape with excellent seakeeping performance in terms of naval air operations as well as traditional naval ship missions such as Transit and Patrol (TAP), and Replenishment at Sea (RAS) and so on. A variety of procedures are systematically combined to determine SOE considering rather complicated missions associated with operation of aircraft onboard. The evaluation of take-off and landing safety missions onboard should consider wind effect on deck and severer seakeeping indices and standards compared with conventional naval ships. In order to support take-off and landing missions, various support activities of the crews are required. So, additional evaluation is needed for indicators such as MSI(Motion sickness Index) and MII(Motion Induced Interruptions), which are quantitative indicators of work ability that appear as a result of motion response. In this study, a standard procedure is developed including the seaworthiness performance indicators, standards, and evaluation procedures that should be considered during design of STOVL aircraft carrier. Analysis results are discussed in terns of air-wake on deck as well as seakeeping indices associated with design parameter changes in view of conceptual design of a light aircraft carrier.

순차적 설계기법에 의한 DWT 75,000 정유운반선의 선형설계 (Stepwise Hull Form Design of DWT 75,000 Product Oil Carrier)

  • 박연석;박세라;정요한;최정규;유재훈
    • 대한조선학회논문집
    • /
    • 제53권6호
    • /
    • pp.456-464
    • /
    • 2016
  • To design the modified hull form with relatively unfavorable dimensions and constraints than the parent ship the stepwise design was applied. In each design step the resistance characteristics was estimated by numerical calculations using CFD programs as Wavis 1.4, Wavis 2.1 and Fluent 12.1. The wave profiles along hull surface by potential flow calculations were investigated to improve wave resistance by modifying the bow shapes. To improve the stern shapes with a point of viscous form resistance the pressure distributions on hull surface and the limiting streamlines are investigated by viscous flow calculations. The design objectives such as shortening the LBP, enlarging the propeller tip clearance, moving forward of the LCB location and increasing the displacement were applied by stepwise to develop the new hull form of DWT 75,000 product oil carrier. Finally a new hull form was developed without the resistance performance loss compared with the parent ship.

Fatigue Analysis of LNG Cargo Containment System Connections in Membrane LNG Carrier

  • Park, Jun-Bum
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권3호
    • /
    • pp.112-124
    • /
    • 2017
  • As an LNG carrier preserves and transports liquefied natural gas under minus $163^{\circ}C$, the cargo tank has to have sufficient hull strength against not only the wave loads but also against loads caused by loading and unloading and thermal expansion to keep the LNG safely. The main insulation types for a CCS are No.96 and Mark III from GTT for the membrane LNG carrier. Particularly, the invar membrane plate in No.96 is very thin and its connections could experience high local stresses owing to such dynamic loads. Therefore, it should be verified whether those connections have sufficient fatigue lives for the purpose of operation and maintenance. This research aims at performing fatigue analysis with 0.1 fatigue damage criteria for 40 years of design life to support new membrane CCS development using proper S-N curves and the associated finite element modeling technique for each connection and then propose a reasonable design methodology.

이중선체 벌크 캐리어의 선체 구조설계 및 경제성 검토 (Structural Design and Economical Assessment of Double Hull Bulk Carrier)

  • 조규남;송하철;천병희;성아현;박상욱;김옥천
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 추계학술대회 논문집
    • /
    • pp.56-60
    • /
    • 2002
  • After many casualties with conventional bulk carriers in recent years, double hull bulk carrier was proposed ta enhance the structural safety of side shell and transverse bulkhead. In this paper, two alternative structural designs of double hull bulk camel were executed based an the Lloyd's rule, and the results were examined in comparison with the existing single hull bulk carrier in the viewpoints of the increase of weight and construction cost. The relative construction concept was used to certify the economical validity of double hull bulk carrier.

  • PDF

동역학 시뮬레이션을 이용한 함재기 견인차량의 주행특성 분석 기법에 관한 연구 (A Study on Analytical Method of Driving Characteristics of Carrier Aircraft Towing Vehicles Using Dynamic Simulation)

  • 오재원;홍사영;홍섭
    • 대한조선학회논문집
    • /
    • 제60권4호
    • /
    • pp.288-295
    • /
    • 2023
  • This paper deals with the dynamic simulation method for analysis of driving characteristics of aircraft and towing vehicles (TUG) on carrier vessel in wave motions. For prompt deployment in a short period of time, optimization of the movement of carrier aircraft becomes a major issue. In this regards, strategy studies using real-time simulation technology and optimal decision-making technologies are being conducted. In the present work, the dynamic characteristics of carrier aircraft and TUG connected by towbar or towbarless mechanism were investigated by means of multi-body dynamics model. Meanwhile, for real-time simulation, Dugoff's model of tire loads calculation was adopted. Through comparative analysis it was confirmed that the similarity of results between the multi-body contact model and the tire load calculation model can be achieved by coefficients tuning.

176k Bulk Carrier에 대한 신개념 타입의 Pre-Swirl Duct의 개발 및 CFD 해석 (Development and CFD Analysis of a New Type Pre-Swirl Duct for 176k Bulk Carrier)

  • 유광열;김문찬;신용진;신이록;김현웅
    • 대한조선학회논문집
    • /
    • 제56권4호
    • /
    • pp.373-382
    • /
    • 2019
  • This paper shows numerical results for the estimation of the propulsor efficiency of Pre-Swirl Duct for 176k bulk carrier as well as its design method. Reynolds averaged Navier-Stokes equations have been solved and the k-epsilon model applied for the turbulent closure. The propeller rotating motion is determined using a sliding mesh technique. The design process is divided into each part of Pre-Swirl Duct, duct and Pre-Swirl Stator. The design of duct was performed first because it is located further upstream than Pre-Swirl Stator. The distribution of velocity through the duct was analyzed and applied for the design of Pre-Swirl Stator. The design variables of duct include duct angle, diameter, and chord length. Diameter, chord length, equivalent angle are considered when designing the Pre-Swirl Stator. Furthermore, a variable pitch angle stator is applied for the final model of Pre-Swirl Duct. The largest reduction rate of the delivered power in model scale is 7.6%. Streamlines, axial and tangential velocities under the condition that the Pre-Swirl Duct is installed were reviewed to verify its performance.

Cape Size Bulk Carrier 최적 선형 개발 연구 (A Study of the Optimum Hull Form Development for Cape Size Bulk Carrier)

  • 김현정;이무열;이창훈;최영달
    • 대한조선학회 특별논문집
    • /
    • 대한조선학회 2008년도 특별논문집
    • /
    • pp.106-111
    • /
    • 2008
  • A hull form is 181K DWT Bulk Carrier, of which new design and hull form have been developed using CFD tools and model tests. The basic concept design of hull form has been carried out with considering the factors, which are a lot of influence of the wave and viscosity resistance. The considered factors of particular are LCB, DLWL shape, tern and stem profile, Cp-curve shape, etc. Numerical calculations are carried out in the initial design stage and experimental model tests are also carried out in towing tank of MOERI. The variation of the significantly effective characteristics is carried out to achieve optimized hull form. The results from numerical calculations and model test as well as the design procedures to obtain an optimized hull form resent in this paper.

  • PDF

Study on sloshing simulation in the independent tank for an ice-breaking LNG carrier

  • Ding, Shifeng;Wang, Gang;Luo, Qiuming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.667-679
    • /
    • 2020
  • As the LNG carrier operates in ice covered waters, it is key to ensure the overall safety, which is related to the coupling effect of ice-breaking process and internal liquid sloshing. This paper focuses on the sloshing simulation of the ice-breaking LNG carrier, and the numerical method is proposed using Circumferential Crack Method (CCM) and Volume of Vluid (VOF) with two main key factors (velocity νx and force Fx). The ship motion analysis is carried out by CCM when the ship navigates in the ice-covered waters with a constant propulsion power. The velocity νx is gained, which is the initial excitation condition for the calculation of internal sloshing force Fx. Then, the ship motion is modified based on iterative computations under the union action of ice-breaking force and liquid sloshing load. The sloshing simulation under the LNG tank is studied with the modified ship motion. Moreover, an ice-breaking LNG ship with three-leaf type tank is used for case study. The internal LNG sloshing is simulated with three different liquid heights, including free surface shape and sloshing pressure distribution at a given moment, pressure curves at monitoring points on the bulkhead. This present method is effective to solve the sloshing simulation during ice-breaking process, which could be a good reference for the design of the polar ice-breaking LNG carrier.