• Title/Summary/Keyword: Ocean buoy

Search Result 299, Processing Time 0.021 seconds

Error Characteristics of Satellite-observed Sea Surface Temperatures in the Northeast Asian Sea (북동아시아 해역에서 인공위성 관측에 의한 해수면온도의 오차 특성)

  • Park, Kyung-Ae;Sakaida, Futoki;Kawamura, Hiroshi
    • Journal of the Korean earth science society
    • /
    • v.29 no.3
    • /
    • pp.280-289
    • /
    • 2008
  • An extensive set of both in-situ and satellite data regarding oceanic sea surface temperatures in Northeast Asian seas, collected over a 10-year period, was collocated and surveyed to assess the accuracy of satellite-observed sea surface temperatures (SST) and investigate the characteristics of satellite measured SST errors. This was done by subtracting insitu SST measurements from multi-channel SST (MCSST) measurements. 845 pieces of collocated data revealed that MCSST measurements had a root-mean-square error of about 0.89$^{\circ}C$ and a bias error of about 0.18$^{\circ}C$. The SST errors revealed a large latitudinal dependency with a range of $\pm3^{\circ}C$ around 40$^{\circ}N$, which was related to high spatial and temporal variability from smaller eddies, oceanic currents, and thermal fronts at higher latitudes. The MCSST measurements tended to be underestimated in winter and overestimated in summer when compared to in-situ measurements. This seasonal dependency was discovered from shipboard and moored buoy measurements, not satellite-tracked surface drifters, and revealed the existence of a strong vertical temperature gradient within a few meters of the upper ocean. This study emphasizes the need for an effort to consider and correct the significant skin-bulk SST difference which arises when calculating SST from satellite data.

Validation of Sea Surface Wind Estimated from KOMPSAT-5 Backscattering Coefficient Data (KOMPSAT-5 후방산란계수 자료로 산출된 해상풍 검증)

  • Jang, Jae-Cheol;Park, Kyung-Ae;Yang, Dochul
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_3
    • /
    • pp.1383-1398
    • /
    • 2018
  • Sea surface wind is one of the most fundamental variables for understanding diverse marine phenomena. Although scatterometers have produced global wind field data since the early 1990's, the data has been used limitedly in oceanic applications due to it slow spatial resolution, especially at coastal regions. Synthetic Aperture Radar (SAR) is capable to produce high resolution wind field data. KOMPSAT-5 is the first Korean satellite equipped with X-band SAR instrument and is able to retrieve the sea surface wind. This study presents the validation results of sea surface wind derived from the KOMPSAT-5 backscattering coefficient data for the first time. We collected 18 KOMPSAT-5 ES mode data to produce a matchup database collocated with buoy stations. In order to calculate the accurate wind speed, we preprocessed the SAR data, including land masking, speckle noise reduction, and ship detection, and converted the in-situ wind to 10-m neutral wind as reference wind data using Liu-Katsaros-Businger (LKB) model. The sea surface winds based on XMOD2 show root-mean-square errors of about $2.41-2.74m\;s^{-1}$ depending on backscattering coefficient conversion equations. In-depth analyses on the wind speed errors derived from KOMPSAT-5 backscattering coefficient data reveal the existence of diverse potential error factors such as image quality related to range ambiguity, discrete and discontinuous distribution of incidence angle, change in marine atmospheric environment, impacts on atmospheric gravity waves, ocean wave spectrum, and internal wave.

Prediction of Sea Water Temperature by Using Deep Learning Technology Based on Ocean Buoy (해양관측부위 자료 기반 딥러닝 기술을 활용한 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Byeon, Seong-Hyeon;Kim, Young-Won
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • Recently, The sea water temperature around Korean Peninsula is steadily increasing. Water temperature changes not only affect the fishing ecosystem, but also are closely related to military operations in the sea. The purpose of this study is to suggest which model is more suitable for the field of water temperature prediction by attempting short-term water temperature prediction through various prediction models based on deep learning technology. The data used for prediction are water temperature data from the East Sea (Goseong, Yangyang, Gangneung, and Yeongdeok) from 2016 to 2020, which were observed through marine observation by the National Fisheries Research Institute. In addition, we use Long Short-Term Memory (LSTM), Bidirectional LSTM, and Gated Recurrent Unit (GRU) techniques that show excellent performance in predicting time series data as models for prediction. While the previous study used only LSTM, in this study, the prediction accuracy of each technique and the performance time were compared by applying various techniques in addition to LSTM. As a result of the study, it was confirmed that Bidirectional LSTM and GRU techniques had the least error between actual and predicted values at all observation points based on 1 hour prediction, and GRU was the fastest in learning time. Through this, it was confirmed that a method using Bidirectional LSTM was required for water temperature prediction to improve accuracy while reducing prediction errors. In areas that require real-time prediction in addition to accuracy, such as anti-submarine operations, it is judged that the method of using the GRU technique will be more appropriate.

A Study on the Relationship between Meteorological Condition and Wave Measurement using X-band Radar (X-밴드 레이더 파랑 계측과 기상 상태 연관성 고찰)

  • Youngjun, Yang
    • Journal of Navigation and Port Research
    • /
    • v.46 no.6
    • /
    • pp.517-524
    • /
    • 2022
  • This paper analyzes wave measurement using X-band navigation (ship) radar, changes in radar signal due to snowfall and precipitation, and factors that obstruct wave measurement. Data obtained from the radar installed at Sokcho Beach were used, and data from the Korea Meteorological Administration and the Korea Hydrographic and Oceanographic Agency were used for the meteorological data needed for comparative verification. Data from the Korea Meteorological Administration are measured at Sokcho Meteorological Observatory, which is about 7km away from the radar, and data from the Korea Hydrographic and Oceanographic Agency are measured at a buoy about 3km away from the radar. To this point, changes in radar signals due to rainfall or snowfall have been transmitted empirically, and there is no case of an analysis comparing the results to actual weather data. Therefore, in this paper, precipitation, snowfall data, CCTV, and radar signals from the Korea Meteorological Administration were comprehensively analyzed in time series. As a result, it was confirmed that the wave height measured by the radar according to snowfall and rainfall was reduced compared to the actual wave height, and a decrease in the radar signal strength according to the distance was also confirmed. This paper is meaningful in that it comprehensively analyzes the decrease in the signal strength of radar according to snowfall and rainfall.

Occurrence of Regalecus russellii off the Coast of Gangwon-do, Korea and Coastal Environment (강원도 속초 연안에서 산갈치(Regalecus russellii) 출현과 연안환경)

  • Jong-Won Park;Soon-Man Kwon;Pyo-Il Han;Chung Il Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.520-524
    • /
    • 2023
  • Regalecus russellii, which spends most of its life in the deep sea, occasionally appears in coastal waters. However, the reasons for its appearance remain unclear. In Korea, R. russellii mainly appears along the eastern coastal waters, and most of them are caught in fishing gear, such as gill nets, or are stranded on the shore; nevertheless, the frequency of appearance is extremely low. Even if found, this species is often identified to be morphologically similar to Trachipterus ishikawae, and comprehensive analysis to identify the species through sample collection is limited. Consequently, information on the biological characteristics of R. russellii appearing in the coastal waters of Korea is scarce. Herein, the anatomical characteristics of R. russellii caught in a gill net off the Gangwon-do coast on March 14, 2023, were analyzed, and coastal water temperature was measured using an ocean buoy. Our results showed that the individual was male, its total length was 320 cm, body weight was 27.52 kg, body length was 26.62 cm, gonad weight was 619.45 g, and liver weight was 218.71 g. The stomach was full of euphausiids. The water temperature changed drastically at 15-30 m roughly a week before the R. russellii individual was caught, and the subsurface water temperature was lower than 10 ℃. Our findings provide baseline data to understand the ecological characteristics of R. russellii appearing along the eastern coast of the Korea.

Assessment of Wave Change considering the Impact of Climate Change (기후변화 영향을 고려한 파랑 변화 평가)

  • Chang Kyum Kim;Ho Jin Lee;Sung Duk Kim;Byung Cheol Oh;Ji Eun Choi
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.4
    • /
    • pp.19-31
    • /
    • 2023
  • According to the climate change scenarios, the intensity of typhoons, a major factor in Korea's natural disaster, is expected to increase. The increase in typhoon intensity leads to a rise in wave heights, which is likely to cause large-scale disasters in coastal regions with high populations and building density for dwelling, industry, and tourism. This study, therefore, analyzed observation data of the Donghae ocean data buoy and conducted a numerical model simulation for wave estimations for the typhoon MAYSAK (202009) period, which showed the maximum significant wave height. The boundary conditions for wave simulations were a JMA-MSM wind field and a wind field applying the typhoon central pressure reduction rate in the SSP5-8.5 climate change scenario. As a result of the wave simulations, the wave height in front of the breakwater at Sokcho port was increased by 15.27% from 4.06 m to 4.68 m in the SSP5-8.5 scenario. Furthermore, the return period at the location of 147-2 grid point of deep-sea design wave was calculated to increase at least twice, it is necessary to improve the deep-sea design wave of return period of 50-year, which is prescriptively applied when designing coastal structures.

Analysis on the volume variation of bag-net in set-net by acoustic telemetry (음향 텔레메트리에 의한 정치망 원통의 체적 변화 해석)

  • Tae, Jong-Wan;Shin, Hyeon-Ok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.2
    • /
    • pp.115-125
    • /
    • 2004
  • An experiment to measure the volume variation of bag net in a set-net by acoustic telemetry system was conducted in Jaran Bay, Gosung, Korea on 10 April to 23 April 2003. The long baseline telemetry system consists of three radio-acoustic linked positioning (RAP) buoys, a time controller with a personal computer and seven pingers. Six pingers were attached on the bottom of the bag-net and the other one was fixed on the sea bed. The results obtained are summarized as follows : 1. The average RAP buoy fixing errors of x-axis, y-axis, and z-axis were 0.2m, 0.4m, and 0.1m, respectively. 2. In the neap tide the minimum and maximum volume of the bag-net on 11 April 2003 were 4,173$m^3$(17:00) and 4,757$m^3$(12:00), respectively. The average current direction and speed at those times were 99.9$^{\circ}$, 12.9cm/s and 104.0$^{\circ}$, 2.4cm/s, respectively. 3. In the spring tide on 17 April 2003, the minimum and maximum volume were 2,016$m^3$(18:30) and 4,454$m^3$(15:00), respectively. The average current direction and speed at those times were 315.6$^{\circ}$, 16.1cm/s and 289.0$^{\circ}$, 5.7cm/s, respectively. 4. In conclusion the maximum variation of the volume on 17 April to 20 April 2003 was 3,552$m^3$ and it was larger 1.4 times than time on 11 April to 16 April 2003.

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.

Long-Term Observation of Temperature in the Coastal Waters Adjacent to the Wolsung Nuclear Power Plant (월성 원자력 발전소 주변 해역의 장기간 수온관측)

  • Chung, Jong-Yul;Kang, Hyoun-Woo;Shin, Young-Jae;Kim, Kye-Young;Jun, Ho-Kyung
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.183-192
    • /
    • 1998
  • The long-term observation of temperature in the coastal waters adjacent to the Wolsung Nuclear Power Plant has been carried out from November 10, 1996 to August 22, 1997, for approximately 280 days using a real-time temperature measurement buoy system. The sea-surface temperature was measured at every 10 minute using 10 buoys. The vertical structure of temperature was investigated near the outlet of the plant with two thermistor chains equipped with 10 sensors at 1 m interval The monthly averaged temperature was the lowest with spatial average of $12.8^{\circ}C$ in February and was the highest in August with spatial average of $19.6^{\circ}C$. The extremely low temperature was frequently observed between June and August, which seems to be the consequence of the intrusion of cold water near the southeastern coast of Korea. Distributions of the daily and hourly averaged temperature show that the highest temperature always occurred near the outlet of the plant and the warm-water patch moved along the north-south direction with the semidiurnal period. The semidiurnal fluctuation of temperature was also observed near the surface of the vertical profiles. The spectral analysis of temperature between February and April 1997 shows that the semidiurnal components prevailed near the outlet. It is likely that the semidiurnal components were due to the prevailing semidiurnal tide in this region. In August 1997, the diurnal components were dominant at the surface water of all stations except Station 12, which suggests that the warm water from the outlet of the plant has less effects in summer on the surrounding waters than the strong solar radiation.

  • PDF