• 제목/요약/키워드: Ocean Wave Model

검색결과 1,183건 처리시간 0.024초

불규칙파.흐름 공존장에서 파랑변동특성 (The Characteristic of Wave Propagation in the Irregular Wave-current field)

  • 이창호;김헌태;류청로;이인철
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.128-134
    • /
    • 2003
  • Numerical study on interactions of waves and currents has considerable practical interests in coastal and ocean engineering. And wave-current interactions strongly influence wave characteristics, current profiles, and forces on offshore structures. Presence of currents affects wave properties such as wave height and wave profiles. Furthermore, in case of the irregular waves, it is more complicated problem. The propose of present study, using the one-dimensional wave-current numerical model is based on the extended Boussinesq equation(Madsen, 1991) and an alternative form of wave-current dispersion relation(Mohiuddin, 1999, 2000) including wave action concept, is to simulate wave propagation in a current field including the irregular waves and discuss applicability of the model in a wave-current field.

  • PDF

Hydraulic Model Test of a Floating Wave Energy Converter with a Cross-flow Turbine

  • Kim, Sangyoon;Kim, Byungha;Wata, Joji;Lee, Young-Ho
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권3호
    • /
    • pp.222-228
    • /
    • 2016
  • Almost 70% of the earth is covered by the ocean. Extracting the power available in the ocean using a wave energy converter has been seen to be eco-friendly and renewable. This study focuses on developing a method for analyzing a wave energy device that uses a cross-flow turbine. The motion of the ocean wave causes an internal bi-directional flow of water and the cross-flow turbine is able to rotate in one direction. This device is considered of double-hull structure, and because of this structure, sea water does not come into contact with theturbine. Due to this, the problem of befouling on the turbine is avoided. This study shows specific relationship for wave length and several motions.

투과성 해안구조물의 Wave Run-up에 대한 CADMAS-SURF의 적용 (An Application of CADMAS-SURF to the Wave run-up in Permeable Coastal Structures)

  • 윤한삼;차종호;강윤구
    • 한국해양공학회지
    • /
    • 제19권4호
    • /
    • pp.49-55
    • /
    • 2005
  • We constructed and demonstrated a numerical CADMAS-SURF(V4.0) model that reproduces the wave run-up characteristics on the slope of coastal structures and applied it to a permeable coastal structure. We also compared the numerical model with published experimental results on the hydrodynamic phenomena of structures and some numerical results for a modified Pbreak model. In conclusion, the CADMAS-SURF model efficiently simulated wave run-up on the slope of a permeable coastal structure. The inflow/outflow effects from the porous structure boundary were approximately $15\%$ more than with the modified Pbreak model. Nevertheless, the descriptions of the internal hydraulic characteristics still could not be full!! exacted from the result(Fig. 1 참조)s obtained in our model experiment.

해일-조석-파랑을 결합한 폭풍해일 수치모델 개발에 관한 연구 (Study on Development of Surge-Tide-Wave Coupling Numerical Model for Storm Surge Prediction)

  • 박종길;김명규;김동철;윤종성
    • 한국해양공학회지
    • /
    • 제27권4호
    • /
    • pp.33-44
    • /
    • 2013
  • IIn this study, a wave-surge-tide coupling numerical model was developed to consider nonlinear interaction. Then, this model was applied and calculations were made for a storm surge on the southeast coast. The southeast coast was damaged by typhoon "Maemi" in 2003. In this study, we used a nearshore wind wave model called SWAN (Simulating WAves Nearshore). In addition, the Meyer model was used for the typhoon model, along with an ocean circulation model called POM (Princeton Ocean Model). The wave-surge-tide coupling numerical model could calculate exact parameters when each model was changed to consider the nonlinear interaction.

Quality Enhancement of MIROS Wave Radar Data at Ieodo Ocean Research Station Using ANN

  • Donghyun Park;Kideok Do;Miyoung Yun;Jin-Yong Jeong
    • 한국해양공학회지
    • /
    • 제38권3호
    • /
    • pp.103-114
    • /
    • 2024
  • Remote sensing wave observation data are crucial when analyzing ocean waves, the main external force of coastal disasters. Nevertheless, it has limitations in accuracy when used in low-wind environments. Therefore, this study collected the raw data from MIROS Wave and Current Radar (MWR) and wave radar at the Ieodo Ocean Research Station (IORS) and applied the optimal filter by combining filters provided by MIROS software. The data were validated by a comparison with South Jeju ocean buoy data. The results showed it maintained accuracy for significant wave height, but errors were observed in significant wave periods and extreme waves. Hence, this study used an artificial neural network (ANN) to improve these errors. The ANN was generalized by separating the data into training and test datasets through stratified sampling, and the optimal model structure was derived by adjusting the hyperparameters. The application of ANN effectively improved the accuracy in significant wave periods and high wave conditions. Consequently, this study reproduced past wave data by enhancing the reliability of the MWR, contributing to understanding wave generation and propagation in storm conditions, and improving the accuracy of wave prediction. On the other hand, errors persisted under high wave conditions because of wave shadow effects, necessitating more data collection and future research.

이어도 주변 파고분포에 대한 수리모형실험 (Hydraulic Model Tests for the Distribution of Wave Height around the Ieodo Underwater Rocks)

  • 전인식;심재설
    • 한국해안해양공학회지
    • /
    • 제17권1호
    • /
    • pp.55-59
    • /
    • 2005
  • 본 자료는 과거 이어도 해양과학기지의 건설과 관련하여 건국대학교와 한국해양연구소가 공동으로 수행한 이어도 수중암초 주변의 파랑변형에 대한 수리모형실험 결과이다. 실험은 총 4개의 파향 (NNW, SE, S, SSW) 각각에 대하여 이어도 정상부 주변 16m×18m의 영역에서 1m 간격으로 파고를 계측하였으며, 4개 파향 공히 이어도 정상에서 쇄파가 발생함을 관찰하였다. 이 자료는 기존의 파랑전파 수치모델의 성능개선과 관련하여 국소적 쇄파역에서의 모델성능을 검증하는데 매우 유용하게 사용될 수 있을 것으로 기대된다.

해안구조물 전면의 Stem Wave특성에 관한 연구 (A Study on the Characteristics of the Stem Wave in front of the Coastal Structure)

  • 박효봉;윤한삼;류청로
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.25-31
    • /
    • 2003
  • Numerical experiments have been conducted using the nonlinear combined refraction-diffraction model, in order to analyze the generation characteristics of stem wave, which is formed by the interaction between vertical structure and the oblique incident waves. The results of stem wave are discussed through the stem wave height distribution along/normal vertical structure, under the wide range of incident wave conditions-wave heights, periods, depths, and angles. Under the same wave height and period, the larger the incident wave angle, the higher the stem wave heights. According to the results of wave height distribution, in front of vertical structure, the maximum of stern wave heights occurs in the location bordering the vertical wall. Furthermore, the most significant result is that stem waves occur under the incident angles between $0^{\circ}\;and\;30^{\circ}$, and the stem wave height ratio has the maximum value, which is approximately 1.85 times the incident wave height when the incident wave angle becomes $23^{\circ}$.

수로형 해역에서의 파랑전달에 미치는 영향인자 분석 (Analysis of Impact Factors for the Wave Transmission in the Narrow Channel Sea)

  • Lee, Gyong-Seon;Yoon, Han-Sam;Ryu, Cheong-Ro;Park, Jong-Hwa
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.303-308
    • /
    • 2003
  • In this paper, wave numerical modeling was experimented for the analysis of impact factors for the wave transmission as the incident wave and topographic conditions in the narrow channel sea. Recently, Although the results of many researcher for the wave modelling, numerical equations have limited to simulation of wave transformation effects. Despite of thispresent problems, the models was used to design the coastal structures in barrow channel sites. Finally, this paper estimated the wave model(mild slope eq. model) as the analysis of the wave energy transmission according to changing of impact factors(width of channel, bottom slope in channel, incident wave angle, wave period). As the results of numerical experiment, the major impact factors which influence to wave energy transmission were the width of channel and incident wave direction. But in the case that the width of channel is larger than 3L(L=Length of wave), the reduction of wave energy was small.

  • PDF

투과성 잠제의 폭 변화에 따른 파랑감쇠 효과에 관하여 (On wave damping effect due to the crest width variation of a permeable submerged breakwater)

  • 허동수;최동석;배기성
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.453-456
    • /
    • 2006
  • To examine the effect of shape and crest width variation of a permeable submerged breakwater on the wave energy dissipation, Two-Dimensional numerical model with Large Eddy Simulation, which is able to simulate directly WAve Structure Seabed interaction (hereafter, LES-WASS-2D) has been newly developed. A good agreement has been obtained by the comparison between the existing experimental results and LES-WASS-2D model's results for the permeable submerged breakwater. Moreover, based on the LES-WASS-2D model, the wave energy dissipation due to a permeable submerged breakwater are discussed for regular and irregular waves with relation to its crest width and shape.

  • PDF

Comparison of Numerical Analyses and Model Test for Evaluation on Hydroelastic and Higher-order Springing Responses of Fixed Cylindrical Structure

  • Kim, Hyun-Sung;Won, Younguk;Oh, Young Jae;Lee, Kangsu;Kim, Byoung Wan
    • 한국해양공학회지
    • /
    • 제35권3호
    • /
    • pp.191-202
    • /
    • 2021
  • Studies on very large offshore structures are increasing owing to the development of deep sea, large-scale energy generation using ocean resources, and so on. The enlargement of offshore structures makes the hydroelastic effect and low natural frequency related responses important. Numerical analyses and model tests for hydroelastic and higher-order springing responses of fixed cylindrical structures are conducted in this study. The panel methods with and without the hydroelastic effect with shell elements, and the Morison analysis method with beam elements are applied. To observe the hydroelastic effect for structural strength, two structures are considered: bottom-fixed cylindrical structures with high and low bending stiffnesses, respectively. The surge motions at the top of the structure and bending stresses on the structure are observed under regular and irregular wave conditions. The regular wave conditions are generated considering the ratios of the cylindrical outer diameter to the wave lengths, and keeping the wave steepness constant. The model tests are performed in the three-dimensional ocean engineering basin in the KRISO (Korea Research Institute of Ships and Ocean Engineering). From the numerical and experimental results, in which the hydroelastic responses are only observed in the case of the structure with a low bending stiffness, it is confirmed that the hydroelastic responses are highly dependent on the structural stiffness. Additionally, the higher-order phenomenon on the specified wave condition is analyzed by observing the higher-order springing responses when the incident wave frequency or its multiples with the high wave height coincides with the natural frequency of the structure.