• Title/Summary/Keyword: Ocean Thermal Energy Conversion (OTEC)

Search Result 46, Processing Time 0.022 seconds

Basic Static Characteristics of a Closed and a Regeneration Cycles for the OTEC System (해양온도차발전 Closed and Regeneration Cycle의 기본 정특성)

  • Cha, Sang-Won;Kim, You-Taek;Mo, Jang-Oh;Lim, Tae-Woo;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.8
    • /
    • pp.1151-1157
    • /
    • 2012
  • Ocean Thermal Energy Conversion(OTEC) technology is one of the new and renewable energy that utilizes the natural temperature gradient that exists in the tropical ocean between warm surface water and the deep cold water, to generate electricity. The selection of working fluid and the OTEC cycle greatly influence the effect on the system operation, and it's energy efficiency and impacts on the environment. Working fluids of the OTEC are ammonia, R22, R407C, and R410A. In this paper, we compared boiling pressure to optimize OTEC system at $25^{\circ}C$. Also, this paper showed net-power and efficiency according to working fluids for closed cycle and regeneration cycle.

The numerical analysis of performance of OTEC system with vapor-vapor ejector (증기-증기 이젝터를 적용한 OTEC 시스템 성능의 수치적 분석)

  • Yoon, Jung-In;Son, Chang-Hyo;Ye, Byung-Hyo;Ha, Soo Jeong;Choi, In-Soo;Lee, Ho-Saeng;Kim, Hyeon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.45-50
    • /
    • 2014
  • In this paper, the Ocean Thermal Energy Conversion(OTEC) with vapor-vapor ejector is proposed newly. At this OTEC system, a vapor-vapor ejector is installed at inlet of condenser. The vapor-vapor ejector plays a very important role in increasing of the production work of low-stage turbine throughout the decrement of outlet pressure of ejector. The performance analysis is conducted for optimizing the system with HYSYS program. The procedure of performance analysis consists of outlet pressure of high turbine, the mass ratio of working fluid at separator, total working fluid rate, and nozzle diameters of vapor-vapor ejector. The main results is summarized as follows. The nozzle diameter is most important thing in this study. When each nozzle diameter of vapor-vapor ejector is 10 mm, the efficiency of OTEC system with vapor-vapor ejector shows the highest value. So it is necessary to set the optimized nozzle diameters of vapor-vapor ejector for achieving the high efficiency OTEC power system.

Performance Characteristics of OTEC(Ocean Thermal Energy Conversion) Power Cycle with Vapor-Liquid Ejector (증기-액 이젝터를 적용한 해양온도차발전 시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Hyeon-Uk;Ha, Soo-Jung;Lee, Ho-Saeng;Kim, Hyun-Ju
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.88-93
    • /
    • 2014
  • In this paper, the performance analysis of condensation and evaporation capacity, turbine work and efficiency of the OTEC power system using vapor-liquid Ejector is presented to offer the basic design data for the operating parameters of the system. The working fluid used in this system is $CO_2$. The operating parameters considered in this study include the vapor quality at heat exchanger outlet, pressure ratio of ejector and inlet pressure of low turbine, mass flow ratio of separator at condenser outlet. The main results were summarized as follows. The efficiency of the OTEC power cycle has an enormous effect on the mass flow ratio of separator at condenser outlet. With a thorough grasp of these effects, it is possible to design the OTEC power cycle proposed in this study.

Feasibility Study on Cold Water Pipe Diameter by Friction Loss and Energy Conversion on OTEC (해양온도차 발전을 위한 심층수 파이프 직경에 따른 에너지 손실량 검토)

  • Jung, Hoon;Heo, Gyunyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.170-170
    • /
    • 2010
  • The energy conversion from the temperature difference between hot and cold source like ocean thermal energy conversion (OTEC), requires a long and large-diameter pipe (about 1000 to 10,000 meters long) to reach the deep water. The pipe diameter ranges from 2.8 meter for proposed early test systems, to 5 meter for large, commercial power generation systems. The pipe must be designed to resist collapsing pressures produced by water temperature and density differences, and the reduced pressure required to induce flow up the pipe. Other design considerations include the external-drag effect on the pipe due to ocean currents, and the wave-induced motions of the platform to which the pipe is attached. Various approaches to the pipe construction have been proposed, including aluminum, steel, concrete, and fiberglass. More recently, a flexible pipe construction involving the use of fiberglass reinforced plastic has been proposed. This report presents the results of a scaled fixed cold water pipe (CWP) model test program performed by EES(Engineering Equation Solver) to demonstrate the feasibility of this pipe approach.

  • PDF

Design and Analysis of Permanent Magnet Synchronous Generator Considering Magnetically Coupled Turbine-Rotor System

  • Kim, Byung-Ok;Choi, Bum-Seog;Kim, Jeong-Man;Cho, Han-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1002-1006
    • /
    • 2015
  • In this paper, design and analysis of permanent magnet synchronous generator for ocean thermal energy conversion (OTEC) considering magnetically coupled turbine-rotor system is discussed. In particular, the rotor dynamics considering bearing span and journal shaft diameter is highlighted. The two topologies of permanent magnet synchronous generator with magnetic coupling are employed for comparison of computed rotor dynamics and generating characteristics. The analysis results show that the critical speed of the turbine-rotor system is higher when the rotor is coupled by magnetically coupling. Finally, the experimental results confirmed the validity of the proposed design and analysis scheme and successful development.

A Study on the Sea Water DTEC Power Generation System of the FPSO (FPSO의 온배수를 활용한 해수 DTEC 발전시스템에 대한 연구)

  • Song, Young-Uk
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.9-16
    • /
    • 2018
  • The development of limited petroleum resources for use with mankind inevitably explores and seeks to develop oil fields in the deep sea area, under the rise of the oil prices market situation. The use of Oceanic Thermal Energy Conversion (OTEC) technology, which operates the power generation facility using the temperature differences between the deep water and the surface water, is progressing actively as a trend to follow. In this study, the application of the Discharged Thermal Energy Conversion (DTEC) was designed and analyzed under the condition that the supply condition of seawater used in the FPSO installed in the deep sea area is changed up to 400m depth. In this case, it was confirmed that the design of the system that can generate more electric power according to the depth of water is confirmed, by thus applying the DTEC system by taking the cooling water at a deeper water depth than the existing design water depth. The FPSO considers the similarity of the OTEC power generation facilities, and will apply the DTEC system to FPSO in the deep sea area to accumulate technology and the conversion to further utilize the OTEC power generation facilities after the end of life cycle of oil production, which could be a solution to two important issues, namely, resource development and sustainable development.

The performance comparison of vapor-vapor ejector OTEC system using wet refrigerants (습냉매를 적용한 증기-증기 이젝터용 OTEC 시스템의 성능비교)

  • Yoon, Jung-In;Son, Chang-Hyo;Kim, Young-Bok;Ye, Byung Hyo;Ha, Su-Jeong;Lee, Ho-Saeng;Kim, Hyeon-Ju
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.4
    • /
    • pp.51-56
    • /
    • 2014
  • In this paper, OTEC(Ocean Thermal Energy Conversion) system with vapor-vapor ejector is newly proposed. And 6 wet refrigerants are applied into the proposed OTEC system for performance comparison. The results of comparison performance are as follows. In the view of system efficiency, R32/R744(90:10) has the highest efficiency among the 6 refrigerants. In case of evaporation capacity, pump work and mass flow rate of working fluid, R744, R717 and R717 is lowest value, respectively. As this results, the vapor-vapor ejector is able to increase the efficiency of system. And It is necessary to select the optimized working fluid considering environmental and economic factors.

Design Optimization of Heat Exchangers for Solar-Heating Ocean Thermal Energy Conversion (SH-OTEC) Using High-Performance Commercial Tubes (고성능 상용튜브를 사용한 태양열 가열 해양온도차발전용 열교환기 설계 최적화)

  • Zhou, Tianjun;Nguyen, Van Hap;Lee, Geun Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.9
    • /
    • pp.557-567
    • /
    • 2016
  • In this study, the optimal design of heat exchangers, including the evaporator and condenser of a solar-heating ocean thermal energy conversion (SH-OTEC), is investigated. The power output of the SH-OTEC is assumed to be 100 kW, and the SH-OTEC uses the working fluid of R134a and high-performance commercial tubes. The surface heat transfer area and the pressure drop were strongly dependent on the number of tubes, as well as the number of tube passes. To solve the reciprocal tendency between the heat transfer area and pressure drop with respect to the number of tubes, as well as the number of tube passes, a genetic algorithm (GA) with two objective functions of the heat transfer area (the capital cost) and operating cost (pressure drop) was used. Optimal results delineated the feasible regions of heat transfer area and operating cost with respect to the pertinent number of tubes and tube passes. Pareto fronts of the evaporator and condenser obtained from multi-objective GA provides designers or investors with a wide range of optimal solutions so that they can select projects suitable for their financial resources. In addition, the surface heat transfer area of the condenser took up a much higher percentage of the total heat transfer area of the SH-OTEC than that of the evaporator.

A Study of Ocean Thermal Energy Conversion Systems Using Kalina cycle and Regenerative Rankine cycle (Kalina 사이클과 재생 Rankine 사이클을 이용한 해양 온도차 발진 시스템)

  • Shin, S.H.;Jung, D.S.;Kim, C.B.;Seo, T.B.
    • Solar Energy
    • /
    • v.19 no.3
    • /
    • pp.101-113
    • /
    • 1999
  • Thermodynamic performance of a simple Rankine cycle, regenerative Rankine cycle, and Kalina cycle for Ocean thermal Energy Conversion(OTEC) is evaluated under the same condition with various working fluids. The evaporator and condenser are modeled by a UA and LMTD method while the turbine and pump are modeled by considering isentropic efficiencies. As for the working fluids, R22, R134a, R32, propylene, ammonia are used for the Rankine cycles while ammonia/water and R32/R134a mixtures are used for Kalina cycle. Calculated results show that newly developed fluids such non-ozone depleting refrigerants as R134a and R32 perform as well as R22 and ammonia. The regenerative Rankine cycle showed a 1.2 to 2.8% increase in energy efficiency as compared to the simple Rankine cycle while the Kalina cycle with ammonia/water mixture showed a 1.8% increase in energy efficiency. The efficiency of the Kalina cycle with R32/R134a mixtures is the same as that of a simple Rankine cycle using R22. Therefore, the regenerative Rankine cycle turns out to be best choice for OTEC applications.

  • PDF

Cycle Simulation on OTEC System using the Condenser Effluent from Nuclear Power Plant (원자력발전소 온배수를 이용한 해양 온도차발전 사이클 해석)

  • Kim, Nam-Jin;Jeon, Young-Han;Kim, Chong-Bo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.37-44
    • /
    • 2007
  • For the past few years, the concern for clean energy has been greatly increased. Ocean Thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this paper, the thermodynamic performance of OTEC cycle was examined. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regeneration cycle, Kalina cycle, open cycle and hybrid cycle. The results show that the regeneration cycle using R125 showed a 0.17 to 1.56% increase in energy efficiency, and simple Rankine cycle can generate electricity when the difference in warm and cold sea water inlet temperatures are greater than $15^{\circ}C$. Also, the cycle efficiency of OTEC power plant using the condenser effluent from nuclear power plant instead of the surface water increased about 2%.