• 제목/요약/키워드: Ocean Information Communication

검색결과 500건 처리시간 0.025초

Design of a Multi-Network Selector for Multiband Maritime Networks

  • Cho, A-Ra;Yun, Chang-Ho;Park, Jong-Won;Chung, Han-Na;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • 제9권5호
    • /
    • pp.523-529
    • /
    • 2011
  • In this paper an inter-layer protocol, referred to as a Multi-Network Selector (MNS) is proposed for multiband maritime networks. A MNS is located between the data-link layer and the network layer and performs vertical handover when a ship moves another radio network. In order to provide seamless data transfer to different radio networks, the MNS uses received signal strength (RSS) and ship's location information as decision parameters for vertical handover, which can avoid ping-pong effect and reduces handover latency. In addition, we present related issues in order to implement the MNS for a multiband maritime network.

효율적 해양탐사를 위한 해양조사선의 종합정보 통신망 구현 (An Implementation of Integrated Information and Communication Network of Oceanographic Research Vessels for Effective Ocean Investments)

  • 박종원;최영철;강준선;임용곤;김시문
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.330-335
    • /
    • 2003
  • This paper deals with the network interface of research and observation instruments in the oceanographic research vessel with an establishment of related database for measured information. The system is implemented to integrated communication network system which allows to effective survey by using real time observation and GUI(Graphic User Interface). The system also consists of the LAN systems and serial interface to link chemical, physical, biological and environmental relations. And, other network service and vessel data service for data communication between vessel and earth station such as INMARSAT-B, WWW service, BBS, E-Mail etc., are needed for integrated communication network system.

  • PDF

Design of Multiband Maritime Network for Ships and its Applications

  • Yun, Chang-Ho;Cho, A-Ra;Kim, Seung-Geun;Park, Jong-Won;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • 제7권3호
    • /
    • pp.314-322
    • /
    • 2009
  • Nowadays, maritime communication systems need high data rate, reliability, and consistency in order to equivalently provide navigating ships with diverse multimedia services as in terrestrial communication systems. For this purpose, we conceptualize and design the maritime network for ships equipped with a multiband communication system which cost-effectively supports multimedia services according to several radiofrequency bands, such as HF, VHF, and satellite frequencies. We also introduce two service scenarios targeted for the maritime network; ship multimedia service (SMS) and real-time maritime logistics location tracking (RML2T). In addition, we specify related works according to three lower network layers (i.e., physical, data-link, and network layers) upon designing the network.

Design of Underwater Ad-hoc Communication Protocol for Underwater Acoustic Networks

  • Yun, Chang-Ho;Cho, A-Ra;Kim, Seung-Geun;Park, Jong-Won;Choi, Young-Chol;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • 제8권1호
    • /
    • pp.6-12
    • /
    • 2010
  • In this paper a cross layer protocol, referred to as an underwater ad-hoc communication (UAC) protocol, is proposed for underwater acoustic networks (UANets). An underwater node (UN), which tries to transfer data to another UN or a buoy in ad-hoc manner, can access channel as well as determine routing path by employing the UAC protocol. The channel access, route determination, and reliable data transfer are designed being adaptive to underwater environments. In addition, we propose both UN and packet architectures in order to efficiently implement the UAC protocol for UANets.

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권2호
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.

A Hierarchical Time Division Multiple Access Medium Access Control Protocol for Clustered Underwater Acoustic Networks

  • Yun, Changho;Cho, A-Ra;Kim, Seung-Geun;Park, Jong-Won;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • 제11권3호
    • /
    • pp.153-166
    • /
    • 2013
  • A hierarchical time division multiple access (HTDMA) medium access control (MAC) protocol is proposed for clustered mobile underwater acoustic networks. HTDMA consists of two TDMA scheduling protocols (i.e., TDMA1 and TDMA2) in order to accommodate mobile underwater nodes (UNs). TDMA1 is executed among surface stations (e.g., buoys) using terrestrial wireless communication in order to share mobility information obtained from UNs which move cluster to cluster. TDMA2 is executed among UNs, which send data to their surface station as a cluster head in one cluster. By sharing mobility information, a surface station can instantaneously determine the number of time slots in a TDMA2 frame up to as many as the number of UNs which is currently residing in its cluster. This can enhance delay and channel utilization performance by avoiding the occurrence of idle time slots. We analytically investigate the delay of HTDMA, and compare it with that of wellknown contention-free and contention-based MAC protocols, which are TDMA and Slotted-ALOHA, respectively. It is shown that HTDMA remarkably decreases delay, compared with TDMA and Slotted-ALOHA.

해양 적응형 무선센서네트워크 기반의 수중 환경 모니터링 시스템 (The Underwater Environment Monitoring System based on Ocean Oriented WSN(Wireless Sensor Network))

  • 윤남열;남궁정일;박현문;박수현;김창화
    • 한국멀티미디어학회논문지
    • /
    • 제13권1호
    • /
    • pp.122-132
    • /
    • 2010
  • 해양 환경 분석은 해양탐사에 필수적인 정보들을 제공한다. 그러나 해양 환경은 해류에 의한 노드의 이동과 염수에 의한 부식, 전파감쇠와 다중경로 발생, 그리고 센서 노드 설치의 어려움 등 다양한 환경변수가 존재한다. 따라서 해양 데이터 통신은 지상통신 환경과는 달리 이러한 환경적 제약 요소로 인해 해양 환경의 데이터들을 수집하는 과정이 복잡하고 힘들다. 이를 해결하기 위해 해양 환경과 유사한 경포호에서 실제 실험을 통해 수질 환경 모니터링을 위한 해양 데이터 통신망을 구축한다. 따라서 본 논문은 경포호 환경 모니터링 시스템의 구축을 통해 환경적 장애요소를 극복하고 해양 환경 모니터링을 위한 센서 노드들의 배치, 그리고 통신 환경의 효과적인 구조를 정의하는데 목적이 있다.

An Implementation of Acoustic-based MAC Protocol Multichannel Underwater Communication Network

  • Lim, Yong-Kon;Park, Jong-Won;Kim, Chun-Suk;Lee, Young-Chul
    • 한국정보통신학회논문지
    • /
    • 제1권1호
    • /
    • pp.105-111
    • /
    • 1997
  • This Paper Proposes a new efficient system design strategies for the acoustic-based underwater multiple modem and media access control protocol. The system aims to establish the acoustic-based communication network of an underwater vehicles for deep sea mining, which ensures a certain level of maximum throughput regardless of the propagation delay of acoustic and allows fast data transmission through the acoustic-based multiple channel. A media access control protocol for integrated communication network and it's acoustic-based communication modems that allows 'peer-to-peer' communication between a surface mining plant multiple underwater system is designed, and the proposed media access control protocol is implemented for its verification. Furthermore, a proposed design strategies which make it possible to control the multiple vehicle for an underwater mining is presented in this paper.

  • PDF

해상 브이용 무선 통신체계 (The Wireless Communication for Marine Buoy)

  • 오진석;전중성
    • 한국정보통신학회논문지
    • /
    • 제18권9호
    • /
    • pp.2140-2146
    • /
    • 2014
  • 해상에 설치되는 브이는 선박의 안전항해 및 다양한 해양 데이터를 수집하기 위한 목적 등으로 운영되고 있다. 이러한 브이는 선박과의 충돌이나 해상 기상상태로 인한 브이의 피해가 자주 발생하면서 이러한 문제를 해결하기 위해 여러 분야에서 연구가 진행 중이다. 본 논문에서는 브이의 상태를 확인하기 위해 사용자가 사전에 정의한 데이터의 형식에 맞춰 브이의 상태를 모니터링 할 수 있게 실험을 하였다. 본 연구에서 설계한 무선 신호 처리 알고리즘을 적용한 무선 원격 제어 보드를 통하여 실험한 결과 육상에서 3분 간격으로 해상 브이에 상태를 모니터링 할 수 있다는 결과를 얻었다. 획득한 데이터의 종류는 브이가 적용되는 환경이나 목적에 따라 사전에 변경 할 수 있다. 이를 해상에 적용하기 위하여 데이터 전송 안정성을 실험하였고, 더불어 무선 통신망의 가용도에 영향을 미치는 것을 실험하였다. 전송된 데이터를 분석한 결과, 태양광, 풍력, 파력 발전에 대하여 각각 최대 50 W, 20 W, 40 W의 발전량을 보임을 확인할 수 있었다. 이러한 연구결과를 통하여 검증된 통신체계는 해상 브이뿐만 아니라 다른 해양구조물에도 적용 가능 할 것으로 예상된다.

INTRODUCTION OF COMS SYSTEM

  • Baek, Myung-Jin;Han, Cho-Young
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.56-59
    • /
    • 2006
  • In this paper, Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program is introduced. COMS program is one of the Korea National Space Programs to develop and operate a pure civilian satellite of practical-use for the compound missions of meteorological observation and ocean monitoring, and space test of experimentally developed communication payload on the geostationary orbit. The target launch of COMS is scheduled at the end of 2008. COMS program is international cooperation program between KARI and ASTRIUM SAS and funded by Korean Government. COMS satellite is a hybrid satellite in the geostationary orbit, which accommodates multiple payloads of MI(Meteorological Imager), GOCI(Geostationary Ocean Color Imager), and the Ka band Satellite Communication Payload into a single spacecraft platform. The MI mission is to continuously extract meteorological products with high resolution and multi-spectral imager, to detect special weather such as storm, flood, yellow sand, and to extract data on long-term change of sea surface temperature and cloud. The GOCI mission aims at monitoring of marine environments around Korean peninsula, production of fishery information (Chlorophyll, etc.), and monitoring of long-term/short-term change of marine ecosystem. The goals of the Ka band satellite communication mission are to in-orbit verify the performances of advanced communication technologies and to experiment wide-band multi-media communication service mandatory.

  • PDF