• Title/Summary/Keyword: Ocean Environmental Loads

Search Result 133, Processing Time 0.026 seconds

Numerical analysis for structure-pile-fluid-soil interaction model of fixed offshore platform

  • Raheem, Shehata E. Abdel;Aal, Elsayed M. Abdel;AbdelShafy, Aly G.A.;Mansour, Mahmoud H.;Omar, Mohamed
    • Ocean Systems Engineering
    • /
    • v.10 no.3
    • /
    • pp.243-266
    • /
    • 2020
  • In-place analysis for offshore platforms is required to make proper design for new structures and true assessment for existing structures. In addition, ensure the structural integrity of platforms components under the maximum and minimum operating loads and environmental conditions. In-place analysis was carried out to verify the robustness and capability of structural members with all appurtenances to support the applied loads in either operating condition or storm conditions. A nonlinear finite element analysis is adopted for the platform structure above the seabed and the pile-soil interaction to estimate the in-place behavior of a typical fixed offshore platform. The SACS software is utilized to calculate the natural frequencies of the model and to obtain the response of platform joints according to in-place analysis then the stresses at selected members, as well as their nodal displacements. The directions of environmental loads and water depth variations have an important effect on the results of the in-place analysis behavior. The influence of the soil-structure interaction on the response of the jacket foundation predicts is necessary to estimate the loads of the offshore platform well and real simulation of offshore foundation for the in-place analysis. The result of the study shows that the in-place response investigation is quite crucial for safe design and operation of offshore platform against the variation of environmental loads.

Design Optimization and Reliability Analysis of Jacket Support Structure for 5-MW Offshore Wind Turbine (해상풍력발전기 자켓 지지구조물의 최적설계 및 신뢰성해석)

  • Lee, Ji-Hyun;Kim, Soo-Young;Kim, Myung-Hyun;Shin, Sung-Chul;Lee, Yeon-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.218-226
    • /
    • 2014
  • Since the support structure of an offshore wind turbine has to withstand severe environmental loads such as wind, wave, and seismic loads during its entire service life, the need for a robust and reliable design increases, along with the need for a cost effective design. In addition, a robust and reliable support structure contributes to the high availability of a wind turbine and low maintenance costs. From this point of view, this paper presents a design process that includes design optimization and reliability analysis. First, the jacket structure of the NREL 5-MW offshore wind turbine is optimized to minimize the weight and stresses, while satisfying the design requirements. Second, the reliability of the optimum design is evaluated and compared with that of the initial design. Although the present study results in a new optimum shape for a jacket support structure with reduced weight and increased reliability, the authors suggest that the optimum design has to be accompanied by a reliability analysis during the design process, as well as reliability based design optimization if needed.

Application of lattice probabilistic neural network for active response control of offshore structures

  • Kim, Dong Hyawn;Kim, Dookie;Chang, Seongkyu
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.153-162
    • /
    • 2009
  • The reduction of the dynamic response of an offshore structure subjected to wind-generated random ocean waves is of extreme significance in the aspects of serviceability, fatigue life and safety of the structure. In this study, a new neuro-control scheme is applied to the vibration control of a fixed offshore platform under random wave loads to examine the applicability of the proposed method. It is called the Lattice Probabilistic Neural Network (LPNN), as it utilizes lattice pattern of state vectors as the training data of PNN. When control results of the LPNN are compared with those of the NN and PNN, LPNN showed better performance in effectively suppressing the structural responses in a shorter computational time.

Offshore wind turbine installation vessel dynamic positioning capability analysis with considering installation structures

  • Daeseong, Lim;S.W., Kim;Jeong-Hyun, Yoon;Seo-ho, Lee
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.461-477
    • /
    • 2022
  • Dynamic Positioning (DP) is a system that uses computer-controlled thrusters, propellers, and other propulsion devices to automatically maintain a vessel's position and heading. In this study, a wind turbine installation vessel with DP capabilities was proposed for use in mild environmental conditions in the Yellow Sea. The thruster arrangements of the vessel were analyzed in relation to wind and current loads, and it was found that a four-corner arrangement of thrusters provided the best position-keeping performance. The vessel's DP control performance was also analyzed in relation to the increased environmental load caused by the presence of a wind turbine, using a capability plot. The vessel's performance was evaluated in three different states: floating with no load, during the loading of a wind turbine and suction buckets, and after the wind turbine has been installed. The use of 750 kW and 1,000 kW thrusters was also considered, and the environmental loads in the Saemangeum coastal area and the environmental load when a 5-Megawatt wind turbine is on board were assessed. The study concluded that at least four thrusters should be used for DP to safely manage the installation process of wind turbines.

Analysis of Dynamic Response Characteristics for 5 MW Jacket-type Fixed Offshore Wind Turbine

  • Kim, Jaewook;Heo, Sanghwan;Koo, WeonCheol
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.5
    • /
    • pp.347-359
    • /
    • 2021
  • This study aims to evaluate the dynamic responses of the jacket-type offshore wind turbine using FAST software (Fatigue, Aerodynamics, Structures, and Turbulence). A systematic series of simulation cases of a 5 MW jacket-type offshore wind turbine, including wind-only, wave-only, wind & wave load cases are conducted. The dynamic responses of the wind turbine structure are obtained, including the structure displacement, rotor speed, thrust force, nacelle acceleration, bending moment at the tower bottom, and shear force on the jacket leg. The calculated time-domain results are transformed to frequency domain results using FFT and the environmental load with more impact on each dynamic response is identified. It is confirmed that the dynamic displacements of the wind turbine are dominant in the wave frequency under the incident wave alone condition, and the rotor thrust, nacelle acceleration, and bending moment at the bottom of the tower exhibit high responses in the natural frequency band of the wind turbine. In the wind only condition, all responses except the vertical displacement of the wind turbine are dominant at three times the rotor rotation frequency (considering the number of blades) generated by the wind. In a combined external force with wind and waves, it was observed that the horizontal displacement is dominant by the wind load. Additionally, the bending moment on the tower base is highly affected by the wind. The shear force of the jacket leg is basically influenced by the wave loads, but it can be affected by both the wind and wave loads especially under the turbulent wind and irregular wave conditions.

Evaluation of Interface Shear Properties Through Static Friction Tests (정적마찰 시험을 통한 접촉전단 특성평가)

  • Chang, Yong-Chai;Lee, Seung-Eun;Seo, Ji-Woong;Bowders, John J.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.813-818
    • /
    • 2009
  • Shear properties of plastic bottle film/plastic bottle film and plastic bottle film/granitic soil which were evaluated from static friction tests. The monotonic shear experiments were performed by using an tilt table apparatus and large direct shear device. The test results showed that the friction angle of each interface and the interface depended on the amount of normal stress, the type of the interface used. Therefore, the testing method should be determined carefully by considering the type of loads and normal stress expected in the field with using the materials installed in the site.

  • PDF

Research on static and dynamic behaviors of PC track beam for straddle monorail transit system

  • Yang, Yongqing;Yang, Deng;Gou, Hongye;Bao, Yi
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.437-452
    • /
    • 2019
  • In this study, in-situ static and dynamic tests of four pre-stressed concrete (PC) track beams with different span lengths and curvatures in a straddle monorail transit system were reported. In the static load tests, the strain and deflection at critical sections of the PC track beams were measured to determine the load bearing capacity and stiffness. The dynamic responses of strain, deflection, acceleration, and displacement at key positions of the PC track beams were measured under different train speeds and train loads to systematically study the dynamic behaviors of the PC track beams. A three-dimensional finite element model of the track beam-vehicle coupled vibration system was established to help understand the dynamic behavior of the system, and the model was verified using the test results. The research results show that the curvature, span length, train speed, and train loads have significant influence on the dynamic responses of the PC track beams. The dynamic performance of the PC track beams in the curve section is susceptible to dynamic loads. Appropriate train loads can effectively reduce the impact of the train on the PC track beam. The PC track beams allow good riding comfort.

A Study on the Design and Analysis of a Bridge Connecting VLFS (VLFS 연결을 위한 연육교 설계 연구)

  • Cho, Kyu-Nam;Yoo, Kyug-Hun;Kang, Jum-Moon;Yoon, Myung-Cheol;Kim, Oi-Hyum
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.179-184
    • /
    • 2002
  • For the development of the practical design and analysis scheme of a bridge connecting to the typical VLFS, relevant design criteria and theory and techniques are studied and numerical analysis for the verification of the structural safety of the bridge are carried out. For the design of a typical steel bridge, characteristics of proper type bridge are reviewed and the requirements fur the bridge of this kind are studied as well as the environmental loads. By using the design spiral technique, several alternatives are investigated and an efficient type of a bridge is initially designed. Structural idealization is performed to make overall structural analysis first, and the structural behaviors of the proposed bridge in the given loading condition are evaluated. Through this study a bridge is finally proposed and it is found that this one works well for the connecting function of the bridge.

  • PDF

종합적인 지구환경 감시를 위한 지구관측시스템 (EOS) 사업

  • Park, Sun-Ki
    • Atmosphere
    • /
    • v.12 no.4
    • /
    • pp.56-68
    • /
    • 2002
  • In this study, an overview of the Earth Observing System (EOS) program is provided with discussions on its spacecrafts and instruments, and on the scientific issues. The EOS satellites aim at monitoring the Earth environmental system by observing parameters of subsystems such as atmosphere, ocean, land, and biosphere. The first EOS flagship, Terra, was launched on December 1999. Five instruments onboard Terra can measure cloud and aerosol properties, radiation, terrestrial surface, and ocean color. The second EOS flagship, Aqua, which was launched on May 2002, loads six instruments that measure clouds, radiation, precipitation, terrestrial surface, ocean color and sea surface temperature. The observational data available from the EOS satellites may complement data from the Communication-Oceanography-Meteorology satellite, which will be launched in 2008, for meteorological and environmental forecasts.

Motion Analysis of Two Point Moored Oil Tanker (2점 계류된 선박에 대한 운동 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.10a
    • /
    • pp.232-236
    • /
    • 2003
  • The anchor is laid on seabed and the main engine is worked to against incident environmental loads in typoon. As the main engine is broken down in the storm, the anchor chain is cutted and the vessel is drifted. Although a ship is moored by two point mooring lines to keep the her position, a ship is crashed into a rock because of typoon and the accident of oil spilling may be occured. In this paper, we studied the position-keeping of a ship which is analyized based on the slow motion maneuvering equations considering wave, current and wind. The direct integration method is employed to estimate wave loads. The current forces are calculated by using mathematical of MMG. The two point mooring forces are quasisatatically evaluated by using the catenary equation. The coefficeints of wind forces are modeled from Isherwood’s emperical data and the variation of wind speed is estimated by wind spectrum. The nonlinear motions of a two point moored ship are simulated considering wave, current, wind load in time domain.

  • PDF