• Title/Summary/Keyword: Ocean Engineering Basin

Search Result 259, Processing Time 0.025 seconds

Hydrodynamic Evaluation Method for Developing the Inflatable Kayak (인플래터블 카약 개발을 위한 유체역학적 성능평가 기법)

  • Ki, Jae-Seok;Hah, Chong-Ku;Jang, Ho-Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.627-634
    • /
    • 2012
  • This study includes results of basin test for hydrodynamic performance evaluation with a developed inflatable kayak. Inclining experiment and turning trial experiment of the developed inflatable kayak and an abroad product were carried out in the Ocean engineering Basin. Resistance test was carried out by using downscale model in the circulating water channel. Through method of following performance evaluation, advantage and disadvantage of the developed inflatable kayak were compared with those of the abroad product.

Development of quasi-static analysis program for catenary mooring system using OpenFOAM (OpenFOAM을 이용한 catenary 계류시스템의 준정적 해석 프로그램 개발)

  • Choi, Jun Hyeok;Lee, Seung Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.274-280
    • /
    • 2017
  • Generally, global performance analysis in offshore platforms is performed using potential-based numerical tools, which neglect hydrodynamic viscous effects. In comparison with the potential theory, computational fluid dynamics (CFD) methods can take into account the viscous effects by solving the Navier-Stokes equation using the finite-volume method. The open-source field operation and manipulation (OpenFOAM) C++ libraries are employed for a finite volume method (FVM) numerical analysis. In this study, in order to apply CFD to the global performance analysis of a hull-mooring coupled system, we developed a numerical wave basin to analyze the global performance problem of a floating body with a catenary mooring system under regular wave conditions. The mooring system was modeled using a catenary equation and solved in a quasi-static condition, which excluded the dynamics of the mooring lines such as the inertia and drag effects. To demonstrate the capability of the numerical basin, the global performance of a barge with four mooring lines was simulated under regular wave conditions. The simulation results were compared to the analysis results from a commercial mooring analysis program, Orcaflex. The comparison included the motion of the barge, catenary shape, and tension in the mooring lines. The study found good agreement between the results from the developed CFD-based numerical calculation and commercial software.

Numerical and experimental analysis of a wave energy converter in extreme waves

  • Ignacio P. Johannesen;Jose M. Ahumada;Gonzalo Tampier;Laura Gruter;Cristian Cifuentes
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.225-245
    • /
    • 2023
  • In the present paper, a numerical and experimental analysis for a wave energy converter under extreme environmental conditions is carried out. After the definition of design waves, including a 100-year return period stochastic sea state and a deterministic rogue wave condition, a numerical analysis using potential theory and a RANS equations solver are compared with experiments carried out at the Seakeeping Basin at the Technical University of Berlin. Results are discussed with special emphasis on the limits of potential theory methods for the evaluation of extreme wave conditions and the use of the presented methodology for early design stages.

Spatial and Temporal Variation Characteristics between Water Quality and Pollutant Loads of Yeong-il Bay (II) - Mutual Variation between Inflowing Pollutant Loads and Water Quality - (영일만 유입오염부하량과 수질의 시${\cdot}$공간적 변동특성(II) - 유입오염부하량과 수질의 상호거동 -)

  • YOON HAN-SAM;LEE IN-CHEOL;RYU CHEONG-RO
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.5 s.54
    • /
    • pp.32-38
    • /
    • 2003
  • This study investigates the distribution characteristics and relationship of water quality, and analyzes the spatial and temporal variation and distribution of the pollutant loads at Yeong-il Bay. The results of these analysis, the concentrations of nutrient loads (T-N and T-P), both appeared to be at the maximum value in November, while most small values were taken in May for the T-N, and in August for the T-P. For COD, the maximum concentration was in August, which has much precipitation during the same season, T-N was at the mean, and T-P was at the minimum value. Using the cluster analysis to develop the division of the sea basin by the dendrogram, before and after construction of Pohang New-port, the variation characteristics of water quality of Yeong-il Bay were discussed. The in flowing pollutant loads were transported to the landward by the high-density salinity water volume of the bottom layer therefore, it formed nutrient trap or coastal trapping areas of the pollutant load. By this mechanism, it is clear that the water volume with high-density nutrient exists on both sides of the Pohang New-port. Thus, the sea basins increasing concentration of the pollutant load at Yeong-il Bay are most prevalent at Hyeong-san estuary, the Pohang Old, and New-port. To improve water quality of this sea basin, the reduction of these nutrients loads should be the highest priority.

Geology of Nogsan National Industrial Engineering Estate (녹산국가공단 조성지 일대의 토목 지질)

  • 안명석;김종대
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.99-106
    • /
    • 2000
  • The geology of Nogsan industrial estate area, Pusan, Korea consists mainly of andesitic rocks, rhyolitic rocks and hornblende granite. They are then intruded by basic and acidic dikes. All of the igneous activities in this area are in Cretaceous time, that is the lower part of Silla group in Gyoungsang basin. Andesitic volcanic rocks are distributed in two separate basines: Saengok basin and Doodong basin. Although both basines contain andesite and andesitic breccia(Kab), younger andesitic activity was more active to the western Doodong basin giving very little influence on the eastern Saengok basin. Sediments in the area are quarternaly alluvium and colluvium. Alluvium is very thick and consists mainly of silt and clay deposited as delta deposits at the mouth of Nakdong river. Colluvium in the area is short distributary channel deposits. The area is largely filled with socks and sediments to build industrial estates especially on the delta deposits at Shinhodong area and on the shoreline mud bed between Yongwondong and Shinhodong. A careful investigation to avoid the possibility of a large scale mud flow is suggested because it could be trigered by many reason such as an earthquake or a flood on the land where a heavily loaded salt-water may soaked into the muddy bed lying on the granitic basement gently dipping toward the ocean. Althouth the area is in the Yangsan fault zone no ground evidence of fault can be seen despite the RESTEC sattlite image gives excelent traces of linearments in the area.

  • PDF

Experimental Study of Wave Run-up on Semi-submersible Offshore Structures in Regular Waves (규칙파 중 반잠수식 해양구조물 주위의 런업에 관한 실험 연구)

  • Kim, Namwoo;Nam, Bo Woo;Cho, Yoonsang;Sung, Hong Gun;Hong, Sa Young
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.6-11
    • /
    • 2014
  • This paper presents the results of an experimental study of wave run-ups on a semi-submersible offshore structure. A series of model tests with a 1:80 scale ratio were carried out in the two-dimensional wave basin of MOERI/KIOST. The experimental model had two columns and one pontoon. The model was fixed and wave elevations were measured at five points per column. Two different draft (operational & survival) conditions and three wave heights were considered under regular wave conditions. First, the nonlinear characteristics of wave run-ups are discussed by using the time series data. Then, the wave heights are compared with numerical results based on the potential flow model. The comparison shows fairly good correlation between the experiments and computations. Finally, wave run-ups under the operational and survival conditions are suggested.

Experimental and Numerical Study on Towing Stability of Transportation Barge (운송 바지선의 예인안정성에 관한 모형시험 및 수치해석 연구)

  • Nam, Bo Woo;Hong, Sa Young;Kim, Jin Ha;Choi, Sung Kwon;Kim, Jong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.102-110
    • /
    • 2014
  • This paper presents the results of an experimental and numerical study on the towing characteristics of a barge. A series of model tests were carried out at the Ocean Engineering Basin of KRISO. A model with a 1:50 scale ratio was constructed out of wood. First, force coefficient tests were performed in order to obtain the surge, sway, and yaw force coefficients of the barge. The focus was the effect of skeg on the force coefficients. The stability parameter was calculated from the force coefficients. Next, towing tests in calm sea were carried out with different towline lengths and towing speeds. The trajectories of the barge and the towline tensions were measured during the tests. The measured trajectories were compared with numerical simulation results using a cross-flow model. The towing stability of the barge in a calm sea is discussed in detail.

Study on the Measurement System of Behavior of a Slender Structure using an Underwater Camera which is applied in DOEB (심해공학수조에 적용되는 수중카메라를 이용한 세장체의 연속 거동 측정방법에 관한 연구)

  • Jung, Dong-Ho;Kwon, Yong-Ju;Park, Byeong-Won;Jung, Jae-Hwan;Choi, Jong-Su;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • This study covers the selection of systems measuring the behaviour of the slender structure in the underwater environment and its performance assessment. From a comparison of an instrumentation system that can measure the continuous behaviour along the entire length of the slender structure, the underwater camera system is finally selected as the most appropriate semi-permanent measurement system for Deep-sea Ocean Engineering Basin of KRISO. An experiment on the rigid pipes for a basic performance evaluation of the underwater camera is conducted in this study. The motion of a top excited rigid pipe is measured with the utilization of the underwater camera system. The performance of the underwater camera is evaluated by comparing the movement of a pipe measured by the underwater camera with the measured input signals. Through the top excitation experiment for the slender structure, the real-time three-dimensional measurement of the underwater camera system is qualitatively evaluated in this case. The developed underwater camera system can apply to the system to measure dynamic behaviour of a slender structure and mooring line in Deep Ocean Engineering Basin.

Experimental result of Real-time Sonar-based SLAM for underwater robot (소나 기반 수중 로봇의 실시간 위치 추정 및 지도 작성에 대한 실험적 검증)

  • Lee, Yeongjun;Choi, Jinwoo;Ko, Nak Yong;Kim, Taejin;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.108-118
    • /
    • 2017
  • This paper presents experimental results of realtime sonar-based SLAM (simultaneous localization and mapping) using probability-based landmark-recognition. The sonar-based SLAM is used for navigation of underwater robot. Inertial sensor as IMU (Inertial Measurement Unit) and DVL (Doppler Velocity Log) and external information from sonar image processing are fused by Extended Kalman Filter (EKF) technique to get the navigation information. The vehicle location is estimated by inertial sensor data, and it is corrected by sonar data which provides relative position between the vehicle and the landmark on the bottom of the basin. For the verification of the proposed method, the experiments were performed in a basin environment using an underwater robot, yShark.