• Title/Summary/Keyword: Ocean Energy

Search Result 2,494, Processing Time 0.027 seconds

A Study of Pneumatic Reaction Force of Air Chamber for an OWC Type Wave Energy Device by Forced Heave Experiments (강제동요시 OWC형 파력발전 공기챔버의 공기반력 실험연구)

  • Hong, Seok-Won;Choi, Hark-Sun;Lew, Jae-Moon;Kim, Jin-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.11-17
    • /
    • 2005
  • The effect of frequency and amplitude of the OWC (Oscillating Water Column) motion on the nonlinear reaction forces in an air duct are studied experimentally. Experimental owe model is idealized as a simple circular cylinder with an orifice type air duct located at the middle oj the top rid. Reaction forces due to forced heave oscillation are measured and analyzed. By subtracting the effect of inertia forces and restoring forces, pneumatic damping force and added spring force are deduced. The effects of the frequency and amplitude of the heave motion are discussed. Also, the effects of solidity of the duct on the reaction forces are discussed.

Study on Performance of Asymmetric Pre-Swirl Stator according to Variations in Dimensions and Blade Tip Shape (제원 및 날개 끝 형상 변화에 따른 비대칭 전류고정날개 성능연구)

  • Shin, Yong-Jin;Kim, Moon-Chan;Kang, Jin-Gu;Lee, Jun-Hyung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.6
    • /
    • pp.431-439
    • /
    • 2016
  • This paper reports a numerical method for determining the resistance and self-propulsion performance of an asymmetric pre-swirl stator used as an energy saving device by cancelling a propeller's rotational energy. The present asymmetric pre-swirl stator propulsion system consists of three blades at the port and one blade at the starboard, which can effectively recover the biased rotating flow. This paper provides the design concept for the present asymmetric stator, which produces more efficient results than a conventional propeller.

An Experimental Study of Pneumatic Damping at the Air Chamber for an OWC-type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험 연구)

  • CHOI HARK-SUN;HONG SEOK-WON;KlM JIN-HA;LEW JAE-MOON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.8-14
    • /
    • 2004
  • Pneumatic damping through an orifice-type duct for an OWC-type wave energy device is studied experimentally. Forced oscillation tests are used to measure chamber pressure and velocity of air-flow through an orifice. Pneumatic damping coefficients are deducted from the experimental research, and the influence of frequency, heave amplitude, and orifice size are discussed. Finally, two formulas are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method for practical application.

Deep Water Wave Model for the East Sea (東海에서의 파랑추산을 위한 심해파랑모형에 대한 연구)

  • Yoon, Jong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.2 s.32
    • /
    • pp.116-128
    • /
    • 1999
  • A deep water wave prediction model applicable to the East Sea is presnted. This model incorporates rediative transter of energy specrum, atmospheric input form the wind, nonlinear interaction, and energy dissipation by white capping. The propagation scheme by Gadd shows satisfactory results and the characteristics of the nonlinear interaction is simulated well by discrete interaction approximatiion. The application of the model to the sea around the Korean Peninsula shows reasonable agreement with the observation.

  • PDF

Design of Floating Type Wave Energy Convertor with Direct Drive Turbine (파랑을 이용한 부유식 직접 구동 터빈의 설계)

  • Choi, HyenJun;Choi, JongWoong;Kim, ChangGoo;Lee, YoungHo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.165.2-165.2
    • /
    • 2011
  • Dye to recent development such as increasing price of fossil fuels and energy offers such a solution. Wave energy supplies. Weve energy offers such a solution. Wave energy is the most consistent of all the intermittent renewable energy sources. In addition to this, very large energy fluxes occur in the ocean waves and by using appropriate wave energy converters the energy can be harnessed. The present study looks at utilizing a direct drive turbine of cross flow type to extract energy from ocean waves indirectly. This novel design incorporates a turbine in an enclosed in a closed tank. utilizing the energy generated from sloshing.

  • PDF

Optimal Design of Blade Shape for 200-kW-Class Horizontal Axis Tidal Current Turbines (200kW급 수평축 조류발전 터빈 블레이드 형상 최적설계)

  • Seo, JiHye;Yi, Jin-Hak;Park, Jin-Soon;Lee, Kwang-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.366-372
    • /
    • 2015
  • Ocean energy is one of the most promising renewable energy resources. In particular, South Korea is one of the countries where it is economically and technically feasible to develop tidal current power plants to use tidal current energy. In this study, based on the design code for HARP_Opt (Horizontal axis rotor performance optimizer) developed by NREL (National Renewable Energy Laboratory) in the United States, and applying the BEMT (Blade element momentum theory) and GA (Genetic algorithm), the optimal shape design and performance evaluation of the horizontal axis rotor for a 200-kW-class tidal current turbine were performed using different numbers of blades (two or three) and a pitch control method (variable pitch or fixed pitch). As a result, the VSFP (Variable Speed Fixed Pitch) turbine with three blades showed the best performance. However, the performances of four different cases did not show significant differences. Hence, it is necessary when selecting the final design to consider the structural integrity related to the fatigue, along with the economic feasibility of manufacturing the blades.

Numerical Analysis of Reflection Characteristics of Perforated Breakwater with a Resonant Channel (공진수로 내장형 유공방파제의 반사특성에 관한 수치해석 연구)

  • Kim, Jeong-Seok;Seo, Ji-Hye;Lee, Joong-Woo;Park, Woo-Sun
    • Journal of Navigation and Port Research
    • /
    • v.38 no.5
    • /
    • pp.503-509
    • /
    • 2014
  • In this study, a new concept perforated breakwater is proposed, which is having resonant channels. In the channel, perforated plate is installed for dissipating wave energy induced by flow separations. The breakwater has two advantages compared with conventional perforated breakwater having wave chamber with slotted walls. One is easy to control the target wave condition for dissipating wave energy, and the other is having the high structural safety because the structural members are not exposed to impact waves, directly. To evaluate wave reflection characteristics of the proposed breakwater, numerical experiment was carried out by using Galerkin's finite element model based on the linear potential theory. The results indicated that considerable energy dissipation occurs near the resonant period of channel, and wave reflection characteristics are affected by channel shape, location and opening ratio.

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

Energy Saving based on HVACS (HVACS 기반의 에너지 절감 연구)

  • Oh, Jin-Seok;Kim, Min-Wook;Lee, Jong-Hak;Oh, Ji-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.7
    • /
    • pp.925-934
    • /
    • 2020
  • In order to improve the energy efficiency of ships, this study designed an energy saving system (ESS) algorithm suitable for ship operation characteristics, and analyzed energy consumption patterns based on the operation characteristics of ships equipped with specific systems. Therefore, we intend to study techniques that can reduce the cost of operation. To this end, we intend to study to implement an efficient system that can increase energy efficiency that reflects the characteristics of the propulsion system of the ship based on the power generation system. The vessel to be researched is intended to conduct research on HVACS (Heating, Ventilation and Air Conditioning) mounted on LNG carriers, and based on this, it has energy with scalability to be applied to future-based vessels such as electric propulsion ships and autonomous ships. I would like to propose a savings technique.

Numerical Study based on Three-Dimensional Potential Flow in Time-Domain for Effect of Wave Field Change due to Coastal Structure on Hydrodynamic Performance of OWC Wave Energy Converter (연안 구조물로 인한 파동장의 변화가 진동수주 파력발전장치 유체성능에 미치는 영향에 관한 3차원 시간영역 포텐셜 유동 기반의 수치 연구)

  • Kim, J.S.;Nam, B.W.;Park, S.;Kim, K.H.;Shin, S.H.;Hong, K.
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.11a
    • /
    • pp.150-152
    • /
    • 2019
  • In this study, the effects of the wave field changes due to the coastal structure on the hydrodynamic performance of the OWC wave energy, converter are analyzed using a three-dimensional numerical wave tank technique (NWT). The OWC device is simulated numerically by introducing a linear pressure drop model, considering the coupling effect between the turbine and the OWC chamber in the time domain. The flow distribution around the chamber is different due to the change of reflection characteristics depending on the consideration of the breakwater model. The wave energy captured from the breakwater is spatially distributed on the plane of the front of the breakwater, and the converted pneumatic power increased when concentrated in front of the chamber. The change of the standing wave distribution is repeated according to the relationship between the incident wavelength and the length of the breakwater, and the difference in energy conversion performance of the OWC was confirmed.

  • PDF