• Title/Summary/Keyword: Ocean Data Communication

Search Result 410, Processing Time 0.02 seconds

Design of Real Time Monitoring System of Ocean & Harbor Environment Using by Internet (인터넷을 이용한 실시간 해양항만 환경모니터링 시스템의 설계)

  • Seo, Kyu-Woo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.63-68
    • /
    • 2003
  • For effective conservation of ocean and harbor, long-term and systematic development of the ocean and harbor monitoring system is essential. The monitoring system capable of real-time and accurate data acquisition is necessary for dealing with contamination such as red tide and the flood. This paper introduces the effective and economical real-time harbor environmental monitoring system that utilizes PCS wireless data communication technology. The monitoring system has various functions such as multiple communication, TCP/IP protocol for wireless internet access, system time synchronization, bi-directional communication between the measuring device and the server. The system has been implemented at Shinseondae harbor pier in Busan to validate the systems stability and effectiveness in data acquisition. The acquired real-time ocean and harbor environmental data is expected to have a large effect, when shared by public through internet.

  • PDF

An Implementation of Integrated Information and Communication Network of Oceanographic Research Vessels for Effective Ocean Investments (효율적 해양탐사를 위한 해양조사선의 종합정보 통신망 구현)

  • Park, Jong-Won;Choi, Young-Cheol;Kang, Jun-Sun;Lim, Yong-Kon;Kim, Sea-Moon
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.330-335
    • /
    • 2003
  • This paper deals with the network interface of research and observation instruments in the oceanographic research vessel with an establishment of related database for measured information. The system is implemented to integrated communication network system which allows to effective survey by using real time observation and GUI(Graphic User Interface). The system also consists of the LAN systems and serial interface to link chemical, physical, biological and environmental relations. And, other network service and vessel data service for data communication between vessel and earth station such as INMARSAT-B, WWW service, BBS, E-Mail etc., are needed for integrated communication network system.

  • PDF

OVERVIEW OF KOREA OCEAN SATELLITE CENTER (KOSC) DEVELOPMENT

  • Yang, Chan-Su;Han, Hee-Jeong;Ahn, Yu-Hwan;Moon, Jeong-Eon;Lee, Nu-Ree
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.75-78
    • /
    • 2006
  • The Korea Ocean Satellite Center (KOSC) is under development to establish in line with the launch of the first Korean multi-function geostationary satellite COMS (Communication, Ocean and Meteorological Satellite) scheduled in 2008. KOSC aims to receive, process and distribute Geostationary Ocean Color Sensor (GOCI) data on board COMS in near-real time. In this report, current status of KOSC development is presented in the following categories; site selection for KOSC, antenna design, GOCI data receiving and processing system, data distribution, future works.

  • PDF

A Real Time, Internet Accessed, Monitoring System of the Ocean and Harbor Environment (인터넷을 이용한 실시간 해양항만 환경모니터링 시스템의 설계)

  • 서규우;김가야
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.10-15
    • /
    • 2004
  • For effective conservation of the oceans and harbors, long-term and systematic development of the ocean and harbor monitoring system is essential. A monitoring system capable of real-time and accurate data acquisition is necessary for dealing with the level of contamination by situations, such as red tide and foods. This paper introduces an effective and economical real-time harbor environmental monitoring system that utilizes PCS wireless data communication technology. The monitoring system has various functions, such as multiple communication, TCP/IP protocol for wireless internet access, system time synchronization, and bi-directional communication between the measuring device and the server. The system has been implemented at Shinseondae harbor pier in Busan to validate the system's stability and effectiveness in data acquisition. The acquired real-time ocean and harbor environmental data is expected to have a large effect, when shared with the public through the Internet.

Design of Multiband Maritime Network for Ships and its Applications

  • Yun, Chang-Ho;Cho, A-Ra;Kim, Seung-Geun;Park, Jong-Won;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.314-322
    • /
    • 2009
  • Nowadays, maritime communication systems need high data rate, reliability, and consistency in order to equivalently provide navigating ships with diverse multimedia services as in terrestrial communication systems. For this purpose, we conceptualize and design the maritime network for ships equipped with a multiband communication system which cost-effectively supports multimedia services according to several radiofrequency bands, such as HF, VHF, and satellite frequencies. We also introduce two service scenarios targeted for the maritime network; ship multimedia service (SMS) and real-time maritime logistics location tracking (RML2T). In addition, we specify related works according to three lower network layers (i.e., physical, data-link, and network layers) upon designing the network.

Design of a Multi-Network Selector for Multiband Maritime Networks

  • Cho, A-Ra;Yun, Chang-Ho;Park, Jong-Won;Chung, Han-Na;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.523-529
    • /
    • 2011
  • In this paper an inter-layer protocol, referred to as a Multi-Network Selector (MNS) is proposed for multiband maritime networks. A MNS is located between the data-link layer and the network layer and performs vertical handover when a ship moves another radio network. In order to provide seamless data transfer to different radio networks, the MNS uses received signal strength (RSS) and ship's location information as decision parameters for vertical handover, which can avoid ping-pong effect and reduces handover latency. In addition, we present related issues in order to implement the MNS for a multiband maritime network.

Design of Underwater Ad-hoc Communication Protocol for Underwater Acoustic Networks

  • Yun, Chang-Ho;Cho, A-Ra;Kim, Seung-Geun;Park, Jong-Won;Choi, Young-Chol;Lim, Yong-Kon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.1
    • /
    • pp.6-12
    • /
    • 2010
  • In this paper a cross layer protocol, referred to as an underwater ad-hoc communication (UAC) protocol, is proposed for underwater acoustic networks (UANets). An underwater node (UN), which tries to transfer data to another UN or a buoy in ad-hoc manner, can access channel as well as determine routing path by employing the UAC protocol. The channel access, route determination, and reliable data transfer are designed being adaptive to underwater environments. In addition, we propose both UN and packet architectures in order to efficiently implement the UAC protocol for UANets.

A Preliminary Performance Analysis of the Meteorological and Ocean Data Communication Subsystem in COMS (통신해양기상위성 기상해양데이터통신계의 예비 성능 해석)

  • Kim, Jung-Pyo;Yang, Gun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.1 no.2
    • /
    • pp.25-31
    • /
    • 2006
  • The COMS (Communication, Ocean, and Meteorological Satellite) performing meteorological and ocean monitoring and providing communication service with meteorological, ocean and Ka-band payload in the geostationary orbit includes MODCS (Meteorological and Ocean Data Communication Subsystem) which provides transmitting the raw data collected by meteorological payload called MI (Meteorological Imager) and ocean payload named GOCI (Geostationary Ocean Color Imager) to the ground station and relaying the meteorological data processed on the ground to the end-user stations. MODCS comprises of two channels: SD channel which formats the raw data according to CCSDS recommendation, amplifies and transmits its signal to the ground station; MPDR channel which relays to the end-user stations the ground-processed meteorological data in the data format of LRIT/HRIT recommended by CGMS. This paper constructs the architecture of MODCS for transmitting and relating the observed data, and investigates that the key performance parameters have the required margin through the preliminary performance analyses.

  • PDF

Study on Underwater Black Box Data Recovery System using Optical Wireless Communication (수중 가시광 통신을 이용한 블랙박스 데이터 회수 시스템 연구)

  • Son, Hyeon-joong;Choi, Hyeung-sik;Kang, Jin-il;Sur, Joo-no;Jeong, Seong-hoon;Lee, Jaeheon;Kim, Seo-kang
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.61-68
    • /
    • 2019
  • Underwater wireless light communication system is quite necessary to retrieve recorded data from underwater devices or the black box without taking back it body. In this paper, a research on the light sensor technology in underwater wireless light communication under turbid sea was studied. A noise source under turbid sea for light communication was analysed, and a sensor system for light sensing using the reference light signal to remove the noises and to improve the output swing power wasstudied. Also, an underwater communication system was manufactured to validate the good performance of the development system, and using the system, the good performance of the developed system was validated through the light communication test in the tank containing the turbid sea water was presented.

SYSTEM DESIGN OF THE COMS

  • Lee Ho-Hyung;Choi Seong-Bong;Han Cho-Young;Chae Jong-Won;Park Bong-Kyu
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.645-648
    • /
    • 2005
  • The COMS(Communication, Ocean and Meteorological Satellite), a multi-mission geo-stationary satellite, is being developed by KARl. The first mission of the COMS is the meteorological image and data gathering for weather forecast by using a five channel meteorological imager. The second mission is the oceanographic image and data gathering for marine environment monitoring around Korean Peninsula by using an eight channel Geostationary Ocean Color Imager(GOCI). The third mission is newly developed Ka-Band communication payload certification test in space by providing communication service in Korean Peninsula and Manjurian area. There were many low Earth orbit satellites for ocean monitoring. However, there has never been any geostationary satellite for ocean monitoring. The COMS is going to be the first satellite for ocean monitoring mission on the geo-stationary orbit. The meteorological image and data obtained by the COMS will be distributed to end users in Asia-Pacific area and it will contribute to the improved weather forecast.

  • PDF