• Title/Summary/Keyword: Ocean Color Monitoring

Search Result 92, Processing Time 0.019 seconds

Development of the GOCI Radiometric Calibration S/W (정지궤도 해양위성(GOCI) 복사보정 S/W 개발)

  • Cho, Seong-Ick;Ahn, Yu-Hwan;Han, Hee-Jeong;Ryu, Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2009.03a
    • /
    • pp.167-171
    • /
    • 2009
  • 정지궤도에서는 세계 최초의 해양관측위성으로 개발된 정지궤도 해양위성(GOCI, Geostationary Ocean Color Imager)은 통신해양기상위성(COMS, Communication, Ocean and Meterological Satellite)의 탑재체로서 2009년말 발사 예정이다. 정지궤도 해양위성의 복사보정은 센서의 전기적 특성에 의한 잡음을 제거하기 위한 암흑전류 교정(Dark Current Correction)을 먼저 수행한 다음, 주운영지상국인 해양위성센터(KOSC, Korea Ocean Satellite Center)에서 수신된 위성의 원시자료의 Digital Number(DN)를 실제 해양원격탐사에서 이용하는 물리량인 복사휘도(Radiance, $W/m^2/{\mu}m/sr$)로 변환하는 복사보정을 수행한다. 정확도 높은 복사보정을 수행하기 위해서는 기준광원의 복사휘도와 센서의 물리적 특성을 정확하게 알아야 한다. 정지궤도 해양위성 궤도상 복사보정(on-orbit radiometric calibration)에서는 태양이 기준광원이기 때문에, 기준 태양복사모델(Thuillier 2004 Solar Irradiance Model)에서 지구-태양간 거리 변화(1년 주기)를 보정한 태양의 방사도 (Irradiance)를 이용하고, 태양입사각에 대한 태양광 확산기의 감쇄 특성 변화를 고려하여 센서에 입력되는 복사휘도를 계산한다. 센서의 물리적 특성으로 인한 복사보정의 오차를 줄이기 위해 우주방사선 및 우주먼지(space debris)로 인해 위성 운용기간 중 그 특성이 저하되는 태양광 확산기(solar Diffuser)의 특성변화를 모니터링하기 위한 DAMD(Diffuser Aging Monitoring Device)를 이용한다. 정지궤도 해양위성 주관운영기관인 한국해양연구원의 해양위성센터에서는 정지궤도 해양위성 복사보정을 수행하기 위한 S/W를 통신해양기상위성 자료처리시스템 개발사업의 일환으로 개발하였으며, 관련 성능 시험을 수행하고 있다.

  • PDF

Pointing Stability Study of the GOCI Scan Mechanism (해양탑재체 스캔 미캐니즘의 포인팅 안정성 연구)

  • Yeon, Jeoung-Heum;Kang, Gum-Sil;Youn, Heong-Sik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.595-600
    • /
    • 2006
  • GOCI is the core paryload of the geostationary satellite COMS(Communication, Ocean and Meteological Satellite) for ocean monitoring. It is scheduled to be launched at the end of 2008. GOCI observes ocean color around the Korean Peninsula over $2500km\times2500km$ area. It used tilted two-axis scan mechanism to observe entire field of view. In this work, the pointing stability of the tilted two-axis method is analyzed and compared with that of gimbal method. The analysis results show that tilted two-axis method gives great stability and it is adequate for geostationary payload. The results can also be used to determine and analyze the mechanism specifications.

Current Status and Development of Modeling Techniques for Forecasting and Monitoring of Air Quality over East Asia (동아시아 대기질 예보 및 감시를 위한 모델링 기술의 현황과 발전 방향)

  • Park, Rae Seol;Han, Kyung Man;Song, Chul Han;Park, Mi Eun;Lee, So Jin;Hong, Song You;Kim, Jhoon;Woo, Jung-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.29 no.4
    • /
    • pp.407-438
    • /
    • 2013
  • Current status and future direction of air quality modeling for monitoring and forecasting air quality in East Asia were discussed in this paper. An integrated air quality modeling system, combining (1) emission processing and modeling, (2) meteorological model simulation, (3) chemistry-transport model (CTM) simulation, (4) ground-based and satellite-retrieved observations, and (5) data assimilation, was introduced. Also, the strategies for future development of the integrated air quality modeling system in East Asia was discussed in this paper. In particular, it was emphasized that the successful use and development of the air quality modeling system should depend on the active applications of the data sets from incumbent and upcoming LEO/GEO (Low Earth Orbit/Geostationary Earth Orbit) satellites. This is particularly true, since Korea government successfully launched Geostationary Ocean Color Imager (GOCI) in June, 2010 and has another plan to launch Geostationary Environmental Monitoring Spectrometer (GEMS) in 2018, in order to monitor the air quality and emissions in/around the Korean peninsula as well as over East Asia.

A Study on the Possibility of Short-term Monitoring of Coastal Topography Changes Using GOCI-II (GOCI-II를 활용한 단기 연안지형변화 모니터링 가능성 평가 연구)

  • Lee, Jingyo;Kim, Keunyong;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1329-1340
    • /
    • 2021
  • The intertidal zone, which is a transitional zone between the ocean and the land, requires continuous monitoring as various changes occur rapidly due to artificial activity and natural disturbance. Monitoring of coastal topography changes using remote sensing method is evaluated to be effective in overcoming the limitations of intertidal zone accessibility and observing long-term topographic changes in intertidal zone. Most of the existing coastal topographic monitoring studies using remote sensing were conducted through high spatial resolution images such as Landsat and Sentinel. This study extracted the waterline using the NDWI from the GOCI-II (Geostationary Ocean Color Satellite-II) data, identified the changes in the intertidal area in Gyeonggi Bay according to various tidal heights, and examined the utility of DEM generation and topography altitude change observation over a short period of time. GOCI-II (249 scenes), Sentinel-2A/B (39 scenes), Landsat 8 OLI (7 scenes) images were obtained around Gyeonggi Bay from October 8, 2020 to August 16, 2021. If generating intertidal area DEM, Sentinel and Landsat images required at least 3 months to 1 year of data collection, but the GOCI-II satellite was able to generate intertidal area DEM in Gyeonggi Bay using only one day of data according to tidal heights, and the topography altitude was also observed through exposure frequency. When observing coastal topography changes using the GOCI-II satellite, it would be a good idea to detect topography changes early through a short cycle and to accurately interpolate and utilize insufficient spatial resolutions using multi-remote sensing data of high resolution. Based on the above results, it is expected that it will be possible to quickly provide information necessary for the latest topographic map and coastal management of the Korean Peninsula by expanding the research area and developing technologies that can be automatically analyzed and detected.

Development of Seasonal Habitat Suitability Indices for the Todarodes Pacificus around South Korea Based on GOCI Data (GOCI 자료를 활용한 한국 연근해 살오징어의 계절별 서식적합지수 모델 개발)

  • Seonju Lee;Jong-Kuk Choi;Myung-Sook Park;Sang Woo Kim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1635-1650
    • /
    • 2023
  • Under global warming, the steadily increasing sea surface temperature (SST) severely impacts marine ecosystems,such as the productivity decrease and change in marine species distribution. Recently, the catch of Todarodes Pacificus, one of South Korea's primary marine resources, has dramatically decreased. In this study, we analyze the marine environment that affects the formation of fishing grounds of Todarodes Pacificus and develop seasonal habitat suitability index (HSI) models based on various satellite data including Geostationary Ocean Color Imager (GOCI) data to continuously manage fisheries resources over Korean exclusive economic zone. About 83% of catches are found within the range of SST of 14.11-26.16℃,sea level height of 0.56-0.82 m, chlorophyll-a concentration of 0.31-1.52 mg m-3, and primary production of 580.96-1574.13 mg C m-2 day-1. The seasonal HSI models are developed using the Arithmetic Mean Model, which showed the best performance. Comparing the developed HSI value with the 2019 catch data, it is confirmed that the HSI model is valid because the fishing grounds are formed in different sea regions by season (East Sea in winter and Yellow Sea in summer) and the high HSI (> 0.6) concurrences to areas with the high catch. In addition, we identified the significant increasing trend in SST over study regions, which is highly related to the formation of fishing grounds of Todarodes Pacificus. We can expect the fishing grounds will be changed by accelerating ocean warming in the future. Continuous HSI monitoring is necessary to manage fisheries' spatial and temporal distribution.

Taxonomic Review of a Rare Butterfly Ray Gymnura japonica (Gymnuridae, Chondrichthyes), in Korea (한국의 희귀 나비가오리[Gymnura japonica (나비가오리과, 연골어강)]의 분류학적 재검토)

  • Kim, Jin-Koo;Ryu, Jung-Hwa;Jang, Seo-Ha;Han, Kyeong-Ho;Kim, Byeong-Yeob
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.1
    • /
    • pp.30-36
    • /
    • 2022
  • We collected a total of four butterfly ray specimens (Gymnura japonica, 213.4-695.0 mm in total length) in Korea from 2016 to 2021 and investigated their morphological and molecular characteristics in order to clarify their taxonomic status. These features are summarized as follows. Disc lozenge-shaped, 1.8-2.0 times broader than long. Tail very short, post-cloaca length 23.9-28.2% in disc width. Snout short, no rostral cartilage. Clasper short, no hook. Dorsal surface uniform yellow or brownish grey, with or without rounded light yellow spots. An analysis of 434 base-pair sequences of mitochondrial DNA cytochrome c oxidase subunit I showed that all four specimens corresponded to G. japonica from Japan (Kimura-2-parameter distance = 0-0.2%), suggesting that the color patterns found may be due to intraspecific color variation. G. japonica resembles Gymnura poecilura but differs in that it has a shorter tail length to disc width (23.9-28.2% in G. japonica vs. 40.1-48.3% in G. poecilura). This study revealed that G. japonica occurred in areas affected by the Tsushima Warm Current, tentatively suggesting that G. japonica may be an indicator species for monitoring marine ecosystem changes due to climate change.

M/T Herbei Sprit Oil Spill Area Monitoring Using Multiple Satellite Data (복합 위성을 이용한 허베이스피리트 유류오염해역 모니터링)

  • Kim, Sang-Woo;Jeong, Hee-Dong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.283-288
    • /
    • 2009
  • Estimations of oil slick area after M/T Herbei Sprit accident in December 2007 were analyzed using ENVITSAT ASAR(Advanced Synthetic Aperture Radar) microwave and KOMPSAT-2 of high resolution data. Monthly end short-term variations of chlorophyll a concentration before end after M/T Herbei Sprit oil spill accident were also analyzed using SeaWiFS/MODIS ocean color data. The oil slick areas estimated by KOMPSAT-2 and ASAR satellites were 59,456 $m^2$ and 1,168 $km^2$, respectively. The winds before end after oil spill accident were prevailed the northerly and northwesterly winds, and the strength of wind in this accident was stronger than 10 m/sec. In Taean and Anmeon-do, monthly mean chlorophyll a concentrations(6.3 mg/$m^3$ and 3.7 mg/$m^3$) in January 2008 alter the oil spill were higher than those(2.9 mg/$m^3$ and 2.5 mg/$m^3$) in December 2007. Short-term variations of chlorophyll a in these areas were decreased alter one or two weeks of oil spill.

  • PDF

Analysis of Red Tide Hot Spots in the South Sea of Gyeongnam Province Using the GOCI Images of COMS (천리안 GOCI영상을 이용한 남해안 적조우심해역 분석)

  • Kim, Dong Gyu;Jung, Yong Han;Yoo, Hwan Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.353-361
    • /
    • 2015
  • The area of red tides occurences, which brings enormous damages every year, have been expanded to the coastal waters across the nation. Regarding to this trend, the development of red tide detection technology by using the GOCI (Geostationary Ocean Color Imager) of COMS lauched in 2010 has been drawn attentions of researchers. This study purposed on analyzing the frequency and density of red tides occurence by using the GOCI for detecting the southern sea, whereas targeted area. The observation has brought over the last three years (2012, 2013, and 2014) before the analysis was conducted. Followingly, the study could be resulted in extracting and revealing the hot spots of the red tides from two of analysis in the overlay and density. The distribution patterns of red tide occurrences according to those observed years has been shown in irregular characteristics and various changes. However, the analysis of hot spots, based on the frequency of the red tide occurrence, has revealed that the frequency of red tide occurences is continuously increased in the specific sea area. Therefore, it is concluded in that the continuous monitoring can contribute to predict accurate movements of red tides, so as establish systematic plans for preventing disasters.

A Development for Sea Surface Salinity Algorithm Using GOCI in the East China Sea (GOCI를 이용한 동중국해 표층 염분 산출 알고리즘 개발)

  • Kim, Dae-Won;Kim, So-Hyun;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1307-1315
    • /
    • 2021
  • The Changjiang Diluted Water (CDW) spreads over the East China Sea every summer and significantly affects the sea surface salinity changes in the seas around Jeju Island and the southern coast of Korea peninsula. Sometimes its effect extends to the eastern coast of Korea peninsula through the Korea Strait. Specifically, the CDW has a significant impact on marine physics and ecology and causes damage to fisheries and aquaculture. However, due to the limited field surveys, continuous observation of the CDW in the East China Sea is practically difficult. Many studies have been conducted using satellite measurements to monitor CDW distribution in near-real time. In this study, an algorithm for estimating Sea Surface Salinity (SSS) in the East China Sea was developed using the Geostationary Ocean Color Imager (GOCI). The Multilayer Perceptron Neural Network (MPNN) method was employed for developing an algorithm, and Soil Moisture Active Passive (SMAP) SSS data was selected for the output. In the previous study, an algorithm for estimating SSS using GOCI was trained by 2016 observation data. By comparison, the train data period was extended from 2015 to 2020 to improve the algorithm performance. The validation results with the National Institute of Fisheries Science (NIFS) serial oceanographic observation data from 2011 to 2019 show 0.61 of coefficient of determination (R2) and 1.08 psu of Root Mean Square Errors (RMSE). This study was carried out to develop an algorithm for monitoring the surface salinity of the East China Sea using GOCI and is expected to contribute to the development of the algorithm for estimating SSS by using GOCI-II.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.