• 제목/요약/키워드: Ocean Color Imager

검색결과 161건 처리시간 0.015초

부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출 (Estimation of Ground-level PM10 and PM2.5 Concentrations Using Boosting-based Machine Learning from Satellite and Numerical Weather Prediction Data)

  • 박서희;김미애;임정호
    • 대한원격탐사학회지
    • /
    • 제37권2호
    • /
    • pp.321-335
    • /
    • 2021
  • 미세먼지 (PM10) 및 초미세먼지 (PM2.5)는 인체에 흡수 가능하여 호흡기 질환 및 심장 질환과 같이 인체건강에 악영향을 미치며, 심각할 경우 조기 사망에 영향을 줄 수 있다. 전 세계적으로 현장관측기반의 모니터링을 수행하고 있지만 미 관측지역에 대한 대기질 분포의 공간적인 한계점이 존재하여 보다 광범위한 지역에 대한 지속적이고 정확한 모니터링이 필요한 상황이다. 위성기반 에어로졸 정보를 사용함으로써 이러한 현장 관측자료의 한계점을 극복할 수 있다. 따라서 본 연구에서는 다양한 위성 및 모델자료를 활용하여 2019년도에 대해 한 시간 단위의 지상 PM10 및 PM2.5 농도를 추정하였다. GOCI 위성의 관측영역을 포함하는 동아시아 지역에 대해 트리 기반 앙상블 방법을 사용하는 Boosting 기법인 GBRTs (Gradient Boosted Regression Trees)와 LightGBM (Light Gradient Boosting Machine)을 활용하여 모델을 구축하였다. 또한, 기상변수 및 토지피복변수의 사용유무에 따른 모델의 성능을 비교하기 위해 두 가지 festure set으로 나누어 테스트하였다. 두 기법 모두 주요 변수인 AOD (Aerosol Optical Depth), SSA (Single Scattering Albedo), DEM (Digital Eelevation Model), DOY (Day of Year), HOD (Hour of Day)와 기상변수 및 토지피복변수를 함께 사용한 Feature set 1을 사용하였을 때 높은 정확도를 보였다. Feature set 1에 대해 GBRT 모델이 LightGBM에 비해서약 10%의 정확도 향상을 보였다. 가장 정확도가 높았던 기상 및 지표면 변수를 포함한 Feature set1을 사용한 GBRT기반 모델을 최종모델로 선정하였으며 (PM10: R2 = 0.82 nRMSE = 34.9%, PM2.5: R2 = 0.75 nRMSE = 35.6%), 계절별 및 연평균 PM10 및 PM2.5 농도에 대한 공간적인 분포를 확인해본 결과, 현장관측자료와 비슷한 공간 분포를 보였으며, 국가별 농도 분포와 계절에 따른 시계열 농도 패턴을 잘 모의하였다.