• Title/Summary/Keyword: Occurrence Matrix

Search Result 274, Processing Time 0.027 seconds

The Extraction of Liver from the CT Images Using Co-occurrence Matrix (Co-occurrence Matrix를 이용한 CT 영상에서의 간 영역 추출)

  • 김규태
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.508-510
    • /
    • 2000
  • 본 논문은 의료 영상 중에서 복부 방사선 분야에서 보편적으로 사용되고 있는 CT 영상으로부터 간영역을 분할해내는 방법을 제시한다. 본 논문에서는 복부 CT영상에서 근육 부분과 척추, 늑골 부분을 제거하고, co-occurrence matrix를 이용한 국부 영상 이진화(local image thresholding) 방법을 통해 영상에서 간 영역을 분할한다.

  • PDF

Extraction of the Liver from Computed Tomography Using Co-occurrence Matrix (Co-occurrence Matrix를 이용한 CT 영상에서 간 영역의 추출)

  • 이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2001
  • 의료영상 처리는 의료 전문가들이 의료영상을 이용한 진단, 치료, 및 연구를 함에 있어 중요한 역할을 하고 있다. 많은 영상 분할 방법들이 의료영상 처리분야에서 성공적으로 사용되고 있다. 본 논문에서는 CT 영상에서 간 영역을 자동으로 추출하는 방법을 제시한다. 본 논문에서는 간 영역을 추출하기 위해 co-occurrence matrix를 적용하였고, 추출된 영역에서 뼈와 근육, 신장 영역을 제거하였다. 제안된 방법은 의료 전문가가 추출한 결과와 비교하여 좋은 결과를 보여주었다.

  • PDF

Priority Method on Same Co-occurrence Count in Adaptive Rank-based Reindexing Scheme (적응적 순위 기반 재인덱싱 기법에서의 동일 빈도 값에 대한 우선순위 방법)

  • You Kang Soo;Yoo Hee Jin;Jang Euee S.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12C
    • /
    • pp.1167-1174
    • /
    • 2005
  • In this paper, we propose a priority method on same co-occurrence count in adaptive rank-based reindexing scheme for lossless indexed image compression. The priority on same co-occurrence count in co-occurrence count matrix depends on a front count value on each raw of co-occurrence count matrix, a count value around diagonal line on each raw of the matrix, and a count value around large co-occurrence count on each raw of the matrix. Experimental results show that our proposed method can be reduced up to 1.71 bpp comparing with Zeng's and Pinho's method.

Terrain Classification Using Three-Dimensional Co-occurrence Features (3차원 Co-occurrence 특징을 이용한 지형분류)

  • Jin Mun-Gwang;Woo Dong-Min;Lee Kyu-Won
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.1
    • /
    • pp.45-50
    • /
    • 2003
  • Texture analysis has been efficiently utilized in the area of terrain classification. In this application features have been obtained in the 2D image domain. This paper suggests 3D co-occurrence texture features by extending the concept of co-occurrence to 3D world. The suggested 3D features are described using co-occurrence histogram of digital elevations at two contiguous position as co-occurrence matrix. The practical construction of co-occurrence matrix limits the number of levels of digital elevation. If the digital elevation is quantized into the number of levels over the whole DEM(Digital Elevation Map), the distinctive features can not be obtained. To resolve the quantization problem, we employ local quantization technique which preserves the variation of elevations. Experiments has been carried out to verify the proposed 3D co-occurrence features, and the addition of the suggested features significantly improves the classification accuracy.

A Study On Recommend System Using Co-occurrence Matrix and Hadoop Distribution Processing (동시발생 행렬과 하둡 분산처리를 이용한 추천시스템에 관한 연구)

  • Kim, Chang-Bok;Chung, Jae-Pil
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.5
    • /
    • pp.468-475
    • /
    • 2014
  • The recommend system is getting more difficult real time recommend by lager preference data set, computing power and recommend algorithm. For this reason, recommend system is proceeding actively one's studies toward distribute processing method of large preference data set. This paper studied distribute processing method of large preference data set using hadoop distribute processing platform and mahout machine learning library. The recommend algorithm is used Co-occurrence Matrix similar to item Collaborative Filtering. The Co-occurrence Matrix can do distribute processing by many node of hadoop cluster, and it needs many computation scale but can reduce computation scale by distribute processing. This paper has simplified distribute processing of co-occurrence matrix by changes over from four stage to three stage. As a result, this paper can reduce mapreduce job and can generate recommend file. And it has a fast processing speed, and reduce map output data.

Edge Detection Using the Co-occurrence Matrix (co-occurrence 행렬을 이용한 에지 검출)

  • 박덕준;남권문;박래홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.11
    • /
    • pp.111-119
    • /
    • 1992
  • In this paper, we propose an edge detection scheme for noisy images based on the co-occurrence matrix. In the proposed scheme based on the step edge model, the gray level information is simply converted into a bit-map, i.e., the uniform and boundary regions of an image are transformed into a binary pattern by using the local mean. In this binary bit-map pattern, 0 and 1 densely distributed near the boundary region while they are randomly distributed in the uniform region. To detect the boundary region, the co-occurrence matrix on the bit-map is introduced. The effectiveness of the proposed scheme is shown via a quantitative performance comparison to the conventional edge detection methods and the simulation results for noisy images are also presented.

  • PDF

Damage classification of concrete structures based on grey level co-occurrence matrix using Haar's discrete wavelet transform

  • Kabir, Shahid;Rivard, Patrice
    • Computers and Concrete
    • /
    • v.4 no.3
    • /
    • pp.243-257
    • /
    • 2007
  • A novel method for recognition, characterization, and quantification of deterioration in bridge components and laboratory concrete samples is presented in this paper. The proposed scheme is based on grey level co-occurrence matrix texture analysis using Haar's discrete wavelet transform on concrete imagery. Each image is described by a subset of band-filtered images containing wavelet coefficients, and then reconstructed images are employed in characterizing the texture, using grey level co-occurrence matrices, of the different types and degrees of damage: map-cracking, spalling and steel corrosion. A comparative study was conducted to evaluate the efficiency of the supervised maximum likelihood and unsupervised K-means classification techniques, in order to classify and quantify the deterioration and its extent. Experimental results show both methods are relatively effective in characterizing and quantifying damage; however, the supervised technique produced more accurate results, with overall classification accuracies ranging from 76.8% to 79.1%.

Spliced Image Detection Using Characteristic Function Moments of Co-occurrence Matrix (동시 발생 행렬의 특성함수 모멘트를 이용한 접합 영상 검출)

  • Park, Tae-Hee;Moon, Yong-Ho;Eom, Il-Kyu
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.10 no.5
    • /
    • pp.265-272
    • /
    • 2015
  • This paper presents an improved feature extraction method to achieve a good performance in the detection of splicing forged images. Strong edges caused by the image splicing destroy the statistical dependencies between parent and child subbands in the wavelet domain. We analyze the co-occurrence probability matrix of parent and child subbands in the wavelet domain, and calculate the statistical moments from two-dimensional characteristic function of the co-occurrence matrix. The extracted features are used as the input of SVM classifier. Experimental results show that the proposed method obtains a good performance with a small number of features compared to the existing methods.

Texture analysis of Thyroid Nodules in Ultrasound Image for Computer Aided Diagnostic system (컴퓨터 보조진단을 위한 초음파 영상에서 갑상선 결절의 텍스쳐 분석)

  • Park, Byung eun;Jang, Won Seuk;Yoo, Sun Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • According to living environment, the number of deaths due to thyroid diseases increased. In this paper, we proposed an algorithm for recognizing a thyroid detection using texture analysis based on shape, gray level co-occurrence matrix and gray level run length matrix. First of all, we segmented the region of interest (ROI) using active contour model algorithm. Then, we applied a total of 18 features (5 first order descriptors, 10 Gray level co-occurrence matrix features(GLCM), 2 Gray level run length matrix features and shape feature) to each thyroid region of interest. The extracted features are used as statistical analysis. Our results show that first order statistics (Skewness, Entropy, Energy, Smoothness), GLCM (Correlation, Contrast, Energy, Entropy, Difference variance, Difference Entropy, Homogeneity, Maximum Probability, Sum average, Sum entropy), GLRLM features and shape feature helped to distinguish thyroid benign and malignant. This algorithm will be helpful to diagnose of thyroid nodule on ultrasound images.

Multiple Object Tracking using Color Invariants (색상 불변값을 이용한 물체 괘적 추적)

  • Choo, Moon Won;Choi, Young Mie;Hong, Ki-Cheon
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.11b
    • /
    • pp.101-109
    • /
    • 2002
  • In this paper, multiple object tracking system in a known environment is proposed. It extracts moving areas shaped on objects in video sequences and detects racks of moving objects. Color invariant co-occurrence matrices are exploited to extract the plausible object blocks and the correspondences between adjacent video frames. The measures of class separability derived from the features of co-occurrence matrices are used to improve the performance of tracking. The experimented results are presented.

  • PDF