• Title/Summary/Keyword: Occupational lung disease

Search Result 77, Processing Time 0.032 seconds

Black Lung Disease Among Coal Miners in Asia: A Systematic Review

  • Kurnia A. Akbar;Kraiwuth Kallawicha
    • Safety and Health at Work
    • /
    • v.15 no.2
    • /
    • pp.123-128
    • /
    • 2024
  • Background: Coal miners are highly prone to occupational health risks, such as black lung disease. This study aims to assess the prevalence of black lung disease and the factors associated with black lung disease among coal miners in Asia. Method: This systematic review, conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, searched through the scientific literature of the following databases: EBSCO, ScienceDirect, PubMed, and Scopus. We selected articles that studied black lung disease among coal miners from 48 countries in Asia and were published between 2014 and 2023. Article quality was evaluated using the Critical Appraisal Skills Program. Result: The seven articles that we review studied a total of 653,635 coal miners from various types of coal mines from three countries in Asia. Of these miners, 59,998 experienced black lung disease. Black lung disease is prevalent among 9.18% of coal miners in Asia, which is approximately four times higher than the worldwide prevalence. Common factors that influence black lung disease in Asia include age, years of dust exposure, smoking, drinking, working types, and sizes of mines, type of mines, respiratory functions, spirometry parameters, tenure, lack of attention to occupational health, inefficient surveillance, and weak occupational health service. Conclusion: Although the prevalence of black lung disease among coal miners in Asia is considerably high, it can be addressed through effective prevention measures, monitoring, control, and case reporting.

A Case Report of Lung Cancer in a Horse Trainer Caused by Exposure to Respirable Crystalline Silica: An Exposure Assessment

  • Yoon, Jin-Ha;Kim, Boowook;Choi, Byung-Soon;Park, So Young;Kwag, Hyun-Suk;Kim, In-Ah;Jeong, Ji Yeon
    • Safety and Health at Work
    • /
    • v.4 no.1
    • /
    • pp.71-74
    • /
    • 2013
  • Here, we present a case of lung cancer in a 48-year-old male horse trainer. To the best of our knowledge, this is the first such case report to include an exposure assessment of respirable crystalline silica (RCS) as a quartz. The trainer had no family history of lung cancer. Although he had a 15 pack/year cigarette-smoking history, he had stopped smoking 12 years prior to his diagnosis. For the past 23 years, he had performed longeing, and trained 7-12 horses per day on longeing arena surfaces covered by recycled sands, the same surfaces used in race tracks. We investigated his workplace RCS exposure, and found it to be the likely cause of his lung cancer. The 8-hour time weight average range of RCS was 0.020 to $0.086mg/m^3$ in the longeing arena. Horse trainers are exposed to RCS from the sand in longeing arenas, and the exposure level is high enough to have epidemiological ramifications for the occupational risk of lung cancer.

Case Report of Asbestosis

  • Lee, Yong-Hwan;Chang, Hee-Kyung;Kiyoshi Sakai;Naomi Hisanaga;Chung, Yong-Hyun;Han, Jeong-Hee;Yu, Il-Je
    • Toxicological Research
    • /
    • v.17 no.3
    • /
    • pp.163-165
    • /
    • 2001
  • A patient,58 years of age, with suspected 0/l pneumoconiosis since 1993, complained of a dry cough and exertioning dyspnea for 6 months. He had worked in an asbestos company for more than 20 years from 1974. He was subsequently diagnosed with an interstitial lung disease during an annual special health check-up for asbestos workers. h chest X-ray showed an interstitial lung disease and high-resolution computed tomography (HRCT) showed a round opaque asbestosis with chronic hypersensitivity pneumonitis. A pulmonary function test indicated that the patient had a mild restrictive lung disease with FEV1 1.67 litters and 82% FEVl/FVC. The bronchoalveloar larvage fluid included many asbestos bodies, indicating previous exposure to asbestos. Transmission electron microscopy (TEM) using an energy dispersive X-ray analyzer (EDX) revealed many asbestos bodies consisting of mainly crocidolite fibers (6,071$\times$$10^6$fibers/g of dry lung). The patient had an unusually high asbestos content of 6,112$\times$$10^6$ asbestos fibers/9 of dry lung.

  • PDF

Exposure Assessment Suggests Exposure to Lung Cancer Carcinogens in a Painter Working in an Automobile Bumper Shop

  • Kim, Boowook;Yoon, Jin-Ha;Choi, Byung-Soon;Shin, Yong Chul
    • Safety and Health at Work
    • /
    • v.4 no.4
    • /
    • pp.216-220
    • /
    • 2013
  • A 46-year-old man who had worked as a bumper spray painter in an automobile body shop for 15 years developed lung cancer. The patient was a nonsmoker with no family history of lung cancer. To determine whether the cancer was related to his work environment, we assessed the level of exposure to carcinogens during spray painting, sanding, and heat treatment. The results showed that spray painting with yellow paint increased the concentration of hexavalent chromium in the air to as much as $118.33{\mu}g/m^3$. Analysis of the paint bulk materials showed that hexavalent chromium was mostly found in the form of lead chromate. Interestingly, strontium chromate was also detected, and the concentration of strontium chromate increased in line with the brightness of the yellow color. Some paints contained about 1% crystalline silica in the form of quartz.

Decision Tree of Occupational Lung Cancer Using Classification and Regression Analysis

  • Kim, Tae-Woo;Koh, Dong-Hee;Park, Chung-Yill
    • Safety and Health at Work
    • /
    • v.1 no.2
    • /
    • pp.140-148
    • /
    • 2010
  • Objectives: Determining the work-relatedness of lung cancer developed through occupational exposures is very difficult. Aims of the present study are to develop a decision tree of occupational lung cancer. Methods: 153 cases of lung cancer surveyed by the Occupational Safety and Health Research Institute (OSHRI) from 1992-2007 were included. The target variable was whether the case was approved as work-related lung cancer, and independent variables were age, sex, pack-years of smoking, histological type, type of industry, latency, working period and exposure material in the workplace. The Classification and Regression Test (CART) model was used in searching for predictors of occupational lung cancer. Results: In the CART model, the best predictor was exposure to known lung carcinogens. The second best predictor was 8.6 years or higher latency and the third best predictor was smoking history of less than 11.25 pack-years. The CART model must be used sparingly in deciding the work-relatedness of lung cancer because it is not absolute. Conclusion: We found that exposure to lung carcinogens, latency and smoking history were predictive factors of approval for occupational lung cancer. Further studies for work-relatedness of occupational disease are needed.

Case Report of Asbestos Exposure-Related Lung Carcinoma

  • Chang, Hee-Kyung;Lee, Yong-Hwan;Kiyoshi Sakai;Naomi Hisanaga;Chung, Yong-Hyun;Han, Jeong-Hee;Yu, Il-Je
    • Toxicological Research
    • /
    • v.18 no.1
    • /
    • pp.43-46
    • /
    • 2002
  • A 61 Year-old female patient was hospitalized for lung cancer. Her Occupational history indicated that she had worked for an asbestos company for 9 years from 1976. The histopathology of the lung revealed malignant bronchioalveolar adenocarcima (stage III) in the lower-left lobe, and a lung sample was found to cantion an unusually high level of asbestos, 218.9$\times$$10^6$ asbestos fibers/g of dry lung tissue. The majority of asbestos fibers found was chrusotile. yet no asbestos body was detected. When compared with Korean male (0.3$\times$$10^6$ fibers/g of dry lung tissue) and female subjects (0.15$\times$$10^6$ fibers/g of dry lung tissue) with no known history of occupational asbestos exposure, the apparent cause of the lung cancer in the current patient was occupational exposure to asbestos.

Risk Assessment for Toluene Diisocyanate and Respiratory Disease Human Studies

  • PARK, Robert M.
    • Safety and Health at Work
    • /
    • v.12 no.2
    • /
    • pp.174-183
    • /
    • 2021
  • Background: Toluene diisocyanate (TDI) is a highly reactive chemical that causes sensitization and has also been associated with increased lung cancer. A risk assessment was conducted based on occupational epidemiologic estimates for several health outcomes. Methods: Exposure and outcome details were extracted from published studies and a NIOSH Health Hazard Evaluation for new onset asthma, pulmonary function measurements, symptom prevalence, and mortality from lung cancer and respiratory disease. Summary exposure-response estimates were calculated taking into account relative precision and possible survivor selection effects. Attributable incidence of sensitization was estimated as were annual proportional losses of pulmonary function. Excess lifetime risks and benchmark doses were calculated. Results: Respiratory outcomes exhibited strong survivor bias. Asthma/sensitization exposure response decreased with increasing facility-average TDI air concentration as did TDI-associated pulmonary impairment. In a mortality cohort where mean employment duration was less than 1 year, survivor bias pre-empted estimation of lung cancer and respiratory disease exposure response. Conclusion: Controlling for survivor bias and assuming a linear dose-response with facility-average TDI concentrations, excess lifetime risks exceeding one per thousand occurred at about 2 ppt TDI for sensitization and respiratory impairment. Under alternate assumptions regarding stationary and cumulative effects, one per thousand excess risks were estimated at TDI concentrations of 10 - 30 ppt. The unexplained reported excess mortality from lung cancer and other lung diseases, if attributable to TDI or associated emissions, could represent a lifetime risk comparable to that of sensitization.

Occupational Lung Diseases: Spectrum of Common Imaging Manifestations

  • Alexander W. Matyga;Lydia Chelala;Jonathan H. Chung
    • Korean Journal of Radiology
    • /
    • v.24 no.8
    • /
    • pp.795-806
    • /
    • 2023
  • Occupational lung diseases (OLD) are a group of preventable conditions caused by noxious inhalation exposure in the workplace. Workers in various industries are at a higher risk of developing OLD. Despite regulations contributing to a decreased incidence, OLD remain among the most frequently diagnosed work-related conditions, contributing to significant morbidity and mortality. A multidisciplinary discussion (MDD) is necessary for a timely diagnosis. Imaging, particularly computed tomography, plays a central role in diagnosing OLD and excluding other inhalational lung diseases. OLD can be broadly classified into fibrotic and non-fibrotic forms. Imaging reflects variable degrees of inflammation and fibrosis involving the airways, parenchyma, and pleura. Common manifestations include classical pneumoconioses, chronic granulomatous diseases (CGD), and small and large airway diseases. Imaging is influenced by the type of inciting exposure. The findings of airway disease may be subtle or solely uncovered upon expiration. High-resolution chest CT, including expiratory-phase imaging, should be performed in all patients with suspected OLD. Radiologists should familiarize themselves with these imaging features to improve diagnostic accuracy.

Clinical Year-in-Review of Occupational Lung Disease (호흡기내과의사를 위한 직업성 폐질환 리뷰)

  • Lee, Won-Yeon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.5
    • /
    • pp.317-321
    • /
    • 2011
  • Occupational lung disease (OLD) is a group of lung diseases caused and/or aggravated by organic and inorganic inhaled dust, fumes, and mist. OLD can develop under various occupational situations. Therefore, occupational history should be considered when evaluating respiratory symptoms. Once OLD is developed, it may not be treated and may even progress after exposure to the causative agents has stopped. The best ways to treat OLD are prevention and early detection by controlling the working environment and conducting regular surveillance of workers. Common OLDs in Korea are coal worker's pneumoconiosis, asbestos-related diseases, and occupational asthma. Recent aspects of these common OLDs in Korea will be described based on recently published studies.