• Title/Summary/Keyword: Occupants Comfort

Search Result 92, Processing Time 0.026 seconds

Impact of standard construction specification on thermal comfort in UK dwellings

  • Amoako-Attah, Joseph;B-Jahromi, Ali
    • Advances in environmental research
    • /
    • v.3 no.3
    • /
    • pp.253-281
    • /
    • 2014
  • The quest for enhanced thermal comfort for dwellings encompasses the holistic utilization of improved building fabric, impact of weather variation and amongst passive cooling design consideration the provision of appropriate ventilation and shading strategy. Whilst thermal comfort is prime to dwellings considerations, limited research has been done in this area with the attention focused mostly on non-dwellings. This paper examines the current and future thermal comfort implications of four different standard construction specifications which show a progressive increase in thermal mass and airtightness and is underpinned by the newly developed CIBSE adaptive thermal comfort method for assessing the risk of overheating in naturally ventilated dwellings. Interactive investigation on the impact of building fabric variation, natural ventilation scenarios, external shading and varying occupants' characteristics to analyse dwellings thermal comfort based on non-heating season of current and future weather patterns of London and Birmingham is conducted. The overheating analysis focus on the whole building and individual zones. The findings from the thermal analysis simulation are illustrated graphically coupled with statistical analysis of data collected from the simulation. The results indicate that, judicious integrated approach of improved design options could substantially reduce the operating temperatures in dwellings and enhance thermal comfort.

Analysis of Noise Environment of Cafe Occupants According to Interior Finishing (실내 인테리어 마감재에 따른 카페 재실자의 소음 환경 영향 분석)

  • Lee, Soo Han;Yun, Huiseung;Wi, Seunghwan;Kim, Sumin
    • Journal of the Korea Furniture Society
    • /
    • v.28 no.4
    • /
    • pp.355-361
    • /
    • 2017
  • Indoor noise environment is an important factor when it comes to occupants comfort, especially in cafe. Results of the survey, 33.9% of occupants were feel unpleasant and sensitive about noise environment. Noise in cafe fluctuate depending on the finishing of both wall and ceiling, volume of the room, and the number of occupants in the room. Therefore, the noise meter device was used for measurement of various under conditions. Also, the subjective assessment of occupant noise was conducted through questionnaires. When the interior finish was exposed concrete, the maximum value of the noise measurement was 66.6 dB and the minimum value was 63 dB, respectively. Also, the result of subjective assessment of unpleasant noise were 5.43 and 4.96 point of 10 point of noise and echo, respectively. Otherwise, the interior finish was gypsum board, the maximum value of the noise measurement was 73.8 dB and the minimum value was 60.4 dB, respectively. Also, the result of subjective assessment of unpleasant noise were 3.88 and 3.95 point of 10 point of noise and echo, respectively. The results of the study showed that the noises and echoes in the cafes were lower than when did not.

Assessment of The Luminance Distribution from Daylighting window by Using Image Processing Methodology (이미지 프로세싱 기법을 활용한 채광창의 휘도분포 평가)

  • Park, Jong Myung;Lim, Hong Soo;Kim, Jeong Tai;Kim, Gon
    • KIEAE Journal
    • /
    • v.12 no.5
    • /
    • pp.77-84
    • /
    • 2012
  • Daylighting is the controlled admission of natural light into a space, reducing electric lighting and saving energy. By providing a direct link to the dynamic and perpetually evolving patterns of outdoor illumination, daylighting helps create a visually stimulating and comfort environment for building occupants, while reducing energy costs. Especially, however, glare is the most important factor in daylighting, which is issued by incoming direct sunlight into windows. This study analyzed the discomfort glare on a daylighting window by using Image processing methodology and found a solution to problems with glare source of occupants. There are several ways to evaluate discomfort glare such as UGR (Unified Glare Rating) of CIE, DGI (Daylight Glare Index, Hopkinson, 1972) and VCP (Visual Comfort Probability) of IES. These are used to apply to the relatively little artificial light source and they cannot cover discomfort glare from a real daylighting window. In this regarding, this paper aimed to calculate DGI index of the real daylighting window in a experimental space by using image processing methodology. The variables and outcomes are luminance distribution of non-shading window, effect of venetian blind installed on the window and locations related to position index of DGI.

Evaluate of allowable acceleration for Occupants in Horizontal Vibration of Buildings according to Natural Frequency (고유주기에 따른 건축물의 수평진동에 대한 거주자의 허용가속도평가)

  • Cho, Kang-Pyo;Jeong, Seung-Hwan;Cho, Gi-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.228-233
    • /
    • 2008
  • In this paper, peak acceleration for horizontal vibration of buildings was estimated from the results of vibration tests using a shaking table. Human comfort of occupants is supposed to be satisfied according to the peak acceleration in NBCC and ISO6897, which have been used by Korean structural engineers. In the paper, we used a one-dimensional shaking table for horizontal vibration tests, which was mounted with a vibration house similar to a living space. Experimental results were obtained according to increasing accelerations in the range of 0.2Hz through 1.2Hz of frequency with five experimental groups, each of which was composed of eight persons. We obtained performance curves by dividing the distribution of perception from horizontal vibration tests into the ranges of 0${\sim}$25%, 26${\sim}$50%, 51${\sim}$75%, 76${\sim}$100% and then fitting the curves. Also we made a questionnaire based on human comfort criteria of foreign countries, and examined the feelings of subjects. From the results of horizontal vibration tests, it was found that acceleration of perception was low when frequency was high, and that visual and auditory senses affect the human perception for horizontal vibration of buildings.

  • PDF

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Summer (여름철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Lee, C.H.;Bae, G.N.;Choi, H.C.;Lee, C.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.206-217
    • /
    • 1994
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 212 occupants were questioned to evaluate Korean thermal comfort in office building in summer. Thermal and comfort sensations were estimated using PMV(Predicted Mean Vote) and ET* (New Effective Temperature) which are most widely used nowadays. Comparing this experimental result with international standards and that of other research, Korean thermal responses were discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained: TSV=0.461ET*-11.808 and neutral temperature is $25.6^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $24.0{\sim}26.8^{\circ}C$, which is about $1^{\circ}C$ higher than that of ANSI/ASHRAE Standard.

  • PDF

Evaluation of Indoor Thermal Comfort for Ceiling Type System Air-Conditioner with Various Discharge Angles (천장형 시스템 에어컨의 토출방향 변화에 따른 실내 열쾌적성 평가)

  • Lee, Jin-Hyung;Kim, You-Jae;Choi, Weon-Seok;Park, Sung-Kwan;Youn, Baek;Kim, Youn-Jea
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1180-1185
    • /
    • 2006
  • Modern people spend most of time at indoor space, such as office or classroom. Especially, occupants are exposed to the airtight indoor air quality (IAQ) for a long time, At present, many studies on the air-conditioning systems are more focused on the individual thermal comfort than the thermal efficiency due to increase of the concern of health. There are several factors which are influenced thermal comfort, such as temperature, humidity, convection and air movement, etc. Also, the individual factor, such as age, gender, Physical constitution and habit, should be considered. The 4-way cassette type air conditioner is known to bring out better performance about thermal comfort than the traditional one. This study is performed on the higher ceiling environment than the common buildings or classrooms. Also, this study analyzed on the Indoor thermal comfort by diffusing direction of 4-way cassette air conditioner with various discharge angles, $45^{\circ},\;50^{\circ},\;55^{\circ}$ and $60^{\circ}$. Using a commercial code, FLUENT, three-dimensional transient air thermal flow fields are calculated with appropriate wall boundary conditions and standard $k-{\epsilon}$ turbulence model. Results of velocity and temperature distributions are graphically depicted with various discharge angles.

  • PDF

A Numerical Investigation of Indoor Air Quality with CFD

  • Sin V. K;Sun H. I
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.207-208
    • /
    • 2003
  • Increasing interest in indoor air quality (IAQ) control has been found because of its serious effect on human health. To evaluate IAQ, thermal comfort in terms of temperature and velocity distributions of indoor air has to be analyzed in detail. Choice of location for installation of air-conditioner in a building will affect the performance of cooling effect and thermal comfort on the occupants, which in turn will affect the indoor air quality (IAQ) of the building. In this paper, we present a discussion on the proper location of the air-conditioner in order to obtain good thermal comfort for occupant of a typical bedroom in Macao. A set of carefully designed numerical experiments is run with the Computational Fluid Dynamics (CFD) software FLOVENT 3.2 [1]. Reynolds averaged Navier-Stokes equations are solved with finite volume technique and turbulence effects upon the mean flow characteristics is modeled with the k - & model. Assumption of steady state environment is made and only convective and conductive heat transfer from the occupant and air-conditioner are being concerned.

  • PDF

Characteristics of Thermal Environments and Evaluation of Thermal Comfort in Office Building in Winter (겨울철 사무실내 온열환경 특성 및 쾌적성 평가)

  • Bae, G.N.;Lee, C.H.;Lee, C.S.;Choi, H.C.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.310-318
    • /
    • 1995
  • In this study, indoor thermal parameters were measured to investigate the characteristics of thermal environments and 138 occupants were questioned to evaluate Korean thermal comfort in office building in winter. Thermal sensation was estimated by using PMV(Predicted Mean Vote) and ET*(New Effective Temperature) indices. Comparing present experimental result with international standards and that of other research, Korean thermal responses were discussed. Seasonal difference between summer and winter was also discussed. It was found that TSV(Thermal Sensation Vote) is more sensitive than PMV to the variation of temperature and that the measured percentage of dissatisfied is higher than PPD(Predicted Percentage of Dissatisfied) in real office building environments. By regression analysis, the following regression equation has been obtained; TSV=0.432ET*-8.814 and neutral temperature is $20.4^{\circ}C$ in this case. Thermal comfort range based on 80% satisfaction is also $19.4{\sim}22.4^{\circ}C$.

  • PDF

Effect of Radiative Mean Temperature on Thermal Comfort of Underfloor Air Distribution System (바닥공조시스템에서 복사온도가 열적 쾌적성에 미치는 영향)

  • Chung, Jae-Dong;Hong, Hi-Ki;Yoo, Ho-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.11
    • /
    • pp.711-717
    • /
    • 2008
  • Despite the fact that UFAD(Under Floor Air Distribution) systems have many benefits and are being applied in the field in increasing numbers, there is a strong need for an improved fundamental understanding of several key performance features of these systems. This study numerically investigates the effect of supplied air temperature and supplied flow rate on the performance of UFAD, especially focused on thermal comfort. Also this study has compared UFAD with conventional overhead air distribution system. In contrast to the well-mixed room air conditions of the conventional overheat system, UFAD system produces an overall floor-to-ceiling airflow pattern that takes advantage of the natural buoyancy produced by heat sources in the occupied zone and more efficiently removes heat loads and contaminants from the space. Thermal comfort parameters were evaluated by CFD approach and then PMV was computed to detect the occupants' thermal sensation. Results show that radiative mean temperature plays crucial role on the evaluating PMV. Until now, the radiative temperature has been the missing link between CFD and thermal comfort, but the present study paves the way for overcoming this weakness.