• 제목/요약/키워드: Occupant Model

Search Result 94, Processing Time 0.022 seconds

A Biomechanical Analysis in the Neck Injury according to the Position of Read Restraint During Low Speed Rear-End Impacts (저속 정후면 추돌시 머리구속장치 위치에 따른 목 상해에 관한 생체 역학적 연구)

  • Jo Huichang;Kim Youngeun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.1
    • /
    • pp.132-139
    • /
    • 2005
  • The driving position of head restraints and the relative risk of neck injury were studied in the computer simulation. MADYMO human model with the detail neck model was used to define the magnitude and direction of internal forces acting on the cervical spine during rear-end impact and to determine the effect of the initial position of the occupant's head with respect to the head restraints. Maximum reaction forces were generated during the head contact to the restraint and relatively large forces were generated at each spinal components in lower cervical spine in proportion to backset and height distance increasement.

Study of Safety Tolerance for Wheelchair Bus Crashworthiness (휠체어 탑승 개조버스의 안전도 연구)

  • Shin, Jaeho;Kang, Byungdo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.4
    • /
    • pp.63-68
    • /
    • 2019
  • The Korean traffic systems for transportation vulnerable are still under development and their social life are limited even if the traffic environment systems are developed consistently. To secure his/her mobility right, it has been required to set up the particular system for the traffic welfare, for example the express and intercity bus operations for wheelchair users. The express and intercity bus development for wheelchair users based on the original bus model has been performed. This study has investigated the safety tolerance for the bus stiffness, rollover and side impact characteristics to ensure occupant safety using the finite element models. The wheelchair bus model showed the improved crashworthiness according to the partially reinforced structure and better safety tolerance for the wheelchair users.

Dynamic Performance of Guardrail System with Various Post Shapes Based on 3-D Soil Material Model (3차원 지반재료 모델기반의 다양한 지주형상을 갖는 노측용 가드레일의 동적성능 평가)

  • Lee, Dong Woo;Yeo, Yong Hwan;Yang, Seung Ho;Woo, Kwang Sung
    • International Journal of Highway Engineering
    • /
    • v.16 no.5
    • /
    • pp.19-28
    • /
    • 2014
  • PURPOSES : This paper evaluates, using LS/DYNA-3D software, the vehicle impact performance of flexible barriers made of steel W-Beam supported by four different types of post configurations. These types include circular post, H-shape post, C-shape post, and square post. METHODS : The post-soil interaction has been investigated according to different impact angles. For this purpose, energy absorption, maximum displacements of post and rail, and occupant risk index of THIV have been compared each other. The three dimensional soil material model, instead of the conventional spring model based on Winkler and p-y curve, has been used to increase the correctness of computational model. RESULTS : It is noted the crash energy absorption has been increased with respect to the increase of impact angle. CONCLUSIONS : In particular, a post with open section(H-shape, C-shape) shows the greater crash energy absorption capability as compared with a post with closed section under the same level of impact conditions.

Development of $5^{th}$ percentile female finite Element Model for Crashworthiness Simulation - Part II Detail Modeling of Internal Components (충돌 안전도 해석을 위한 $5^{th}$ percentile 성인 여성 유한요소 모델 개발 - Part II 신체 부위 별 상세 모델 개발)

  • 나상진;최형연;이진희
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2004
  • The finite element modeling of small female occupant for crash simulation is presented in this paper subsequently to the part I of articulated rigid body model. The limbs and internal components are additionally modeled by joining them to the articulated rigid body model for predicting the crash injuries such as bone fractures and joint dislocations. The behavioral characteristics of each limbs and internal components were validated against available cadaveric test results. Accordingly, the human model proposed in this paper could be utilized for the investigation of impact injury mechanism and further complement the lacking biofidelity of current crash dummy.

A Development on the Prediction Model for the HIC15 using USNCAP Frontal Impact Test Results (USNCAP 정면충돌시험 결과를 이용한 HIC15 예측모델 개발)

  • Lim, Jaemoon
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.4
    • /
    • pp.31-38
    • /
    • 2020
  • This study is to develop the prediction model for the HIC15 in frontal vehicle crash tests. The 28 frontal impact test results of the MY2019 and MY2020 USNCAP are utilized. The metrics for evaluating the crash pulse severity such as moving average acceleration, Restraint Quotient (RQ) and ride-down efficiency are reviewed to find out whether the metrics can predict the HIC15. It is observed that the R2 values based on the linear regression of all pairs between the existing metrics and the occupant injuries such as the HIC15, 3 ms chest g's and chest deflection are very low. In this study, using the vehicle crash pulses, the linear regression model for estimating the HIC15 is developed. The vehicle crash pulse is splitted seven 10 ms intervals in 70 ms after impact for extracting the average accelerations in each intervals. The prediction model can predict effectively not only the HIC15 but also the maximum head g's, chest deflection and 3 ms chest g's of 13 vehicles out of 28 vehicles.

A Comparative Study on the Occupant Evacuation Behavior Model of Domestic and Foreign in Long Term Care Hospital (국내·외 요양병원의 재실자 피난행동 모델에 관한 비교연구)

  • Choi, Yun-Ju;Jin, Seung-Hyeon;Kwon, Young-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.166-167
    • /
    • 2021
  • The elderly population in Korea is constantly increasing. As the number of Long-Term Care hospitals increases, many fires have occurred in related facilities. In this facilities, due to the characteristics of the occupants, self-evacuation is difficult, resulting in a number of casualties. It is necessary to Life safety design that reflects the characteristics of the occupants of domestic long-term hospitals. The study attempted to suggest improvements to the standards of evacuation behavior model for occupants of domestic and overseas long-term care hospitals. As a result of the study, patients living in long-term hospitals have a problem that is difficult to evacuate on their own. It is judged that there is a need to present an evacuation behavior model database by setting evacuation priorities and evacuation plans. In addition, it is necessary to more the design factors that affect the evacuation model as well as the characteristics of the occupants of the long-term care hospital.

  • PDF

Study on the Hazardousness of a Rigidly Connected Circular Post and Crash Worthiness of a Circular Post with Release Mechanism for Head-on Impacts Using Impact Simulation (시뮬레이션을 통한 강결된 원형지주의 정면충돌에 대한 위험도 및 분리식 지주의 효과 분석)

  • Ko, Man-Gi;Kim, Kee-Dong;Kim, Kyoung-Ju;Sung, Jung-Gon;Yun, Duk-Geun
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.197-202
    • /
    • 2010
  • Post release mechanism is generally used to reduce the severity of the occupant of an errant vehicle impacting a roadside posts. The 820kg-50km/h head-on impact simulations were made using LS-DYNA program for the posts of 101.6mm Dia(t=4.0mm) with and without clip-type release mechanism. The simulation result was compared with impact test result to enhance the credibility of simulation model. The study shows that the high impact severity (THIV, PHD) and excessive deformation threatens the safety of the occupant when a car impacts a rigidly connected posts, while a post with clip-type slip base reduce the impact severity to a safe level.

A Method for Pedestrian Accident Reconstruction Using Optimization (최적화방법을 이용한 보행자 충돌사고 재현기법 개발)

  • 유장석;홍을표;장명순;박경진;손봉수
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.105-113
    • /
    • 2002
  • As the number of pedestrian accident increases, the reconstruction of an accident becomes important to find the source of the fault. Generally, accidents are reconstructed by the intuition of experts or primitive physics. A reconstruction method is proposed using sophisticated optimization technology. At first, a dynamic simulation model is established for the accident environment. Occupant analysis for automobile crashworthiness is employed. The situation before an accident is identified by optimization. The impact velocity and the position of the pedestrian are utilized as design variables. The design variables are found by minimizing the difference between the simulation and the real accident. The optimization process is performed by linking an occupant analysis program MADYMO to an optimization program VisualDOC. Since the involved analysis is dynamics and highly nonlinear, response surface method is selected for the optimization process. Problems are solved for various situations.

Human-Induced Vibrations in Buildings

  • Wesolowsky, Michael J.;Irwin, Peter A.;Galsworthy, Jon K.;Bell, Andrew K.
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Occupant footfalls are often the most critical source of floor vibration on upper floors of buildings. Floor motions can degrade the performance of imaging equipment, disrupt sensitive research equipment, and cause discomfort for the occupants. It is essential that low-vibration environments be provided for functionality of sensitive spaces on floors above grade. This requires a sufficiently stiff and massive floor structure that effectively resists the forces exerted from user traffic. Over the past 25 years, generic vibration limits have been developed, which provide frequency dependent sensitivities for wide classes of equipment, and are used extensively in lab design for healthcare and research facilities. The same basis for these curves can be used to quantify acceptable limits of vibration for human comfort, depending on the intended occupancy of the space. When available, manufacturer's vibration criteria for sensitive equipment are expressed in units of acceleration, velocity or displacement and can be specified as zero-to-peak, peak-to-peak, or root-mean-square (rms) with varying frequency ranges and resolutions. Several approaches to prediction of floor vibrations are currently applied in practice. Each method is traceable to fundamental structural dynamics, differing only in the level of complexity assumed for the system response, and the required information for use as model inputs. Three commonly used models are described, as well as key features they possess that make them attractive to use for various applications. A case study is presented of a tall building which has fitness areas on two of the upper floors. The analysis predicted that the motions experienced would be within the given criteria, but showed that if the floor had been more flexible, the potential exists for a locked-in resonance response which could have been felt over large portions of the building.

Evaluation of the Protection Performance of SB4 Class Concrete Barrier with Anti-Glare Function (SB4 등급 방현기능 콘크리트 방호울타리의 방호성능 평가)

  • Joo, Bongchul;Hong, Kinam;Yun, Junghyun;Lee, Jaeha;Kim, Jungho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2021
  • This paper describes the process of developing a concrete median barrier of SB4 grade with anti-glare function. The development section has a height and width of 1,270mm and 560mm, respectively. A wire mesh is placed in the center of the cross section to improve the protection performance. Collision analysis predicted that this section satisfies the strength and occupant protection performance, and that no damage to the barrier occurs. In the actual collision test, it was confirmed that this section satisfies the strength and occupant protection performance. However, damage was observed on two concrete barrier when the truck crashed. In order to improve the accuracy of the collision analysis of the concrete barrier in the future, it is considered that a study on the model development and continuous collision analysis method for domestic commercial vehicles should be carried out.