• 제목/요약/키워드: Occlusion Robust

검색결과 99건 처리시간 0.027초

2단계 부분 어텐션 네트워크를 이용한 가려짐에 강인한 군용 차량 검출 (Occlusion Robust Military Vehicle Detection using Two-Stage Part Attention Networks)

  • 조선영
    • 한국군사과학기술학회지
    • /
    • 제25권4호
    • /
    • pp.381-389
    • /
    • 2022
  • Detecting partially occluded objects is difficult due to the appearances and shapes of occluders are highly variable. These variabilities lead to challenges of localizing accurate bounding box or classifying objects with visible object parts. To address these problems, we propose a two-stage part-based attention approach for robust object detection under partial occlusion. First, our part attention network(PAN) captures the important object parts and then it is used to generate weighted object features. Based on the weighted features, the re-weighted object features are produced by our reinforced PAN(RPAN). Experiments are performed on our collected military vehicle dataset and synthetic occlusion dataset. Our method outperforms the baselines and demonstrates the robustness of detecting objects under partial occlusion.

Bottom-Up Segmentation Based Robust Shape Matching in the Presence of Clutter and Occlusion

  • Joo, Han-Byul;Jeong, Ye-Keun;Kweon, In-So
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.307-310
    • /
    • 2009
  • In this paper, we present a robust shape matching approach based on bottom-up segmentation. We show how over-segmentation results can be used to overcome both ambiguity of contour matching and occlusion. To measure the shape difference between a template and the object in the input, we use oriented chamfer matching. However, in contrast to previous work, we eliminate the affection of the background clutters before calculating the shape differences using over-segmentation results. By this method, we can increase the matching cost interval between true matching and false matching, which gives reliable results. Finally, our experiments also demonstrate that our method is robust despite the presence of occlusion.

  • PDF

가려짐에 강인한 축구공 추적 (Soccer Ball Tracking Robust Against Occlusion)

  • 이권;이철희
    • 방송공학회논문지
    • /
    • 제17권6호
    • /
    • pp.1040-1047
    • /
    • 2012
  • 본 논문에서는 축구 방송 영상에서 가려짐에 강인한 축구공 추적 알고리즘을 제안한다. 축구공은 가려짐, 축구공의 빠른 움직임 그리고 빠른 방향 전환 등으로 인해 추적이 어렵다. 기존의 방법들은 대부분 각각의 영상에서 축구공 후보들을 찾고 가능한 모든 경로를 예측하여 최적의 축구공 경로를 찾는 방식으로 축구공을 추적하였으나 이러한 방식은 연산량이 많아 실시간 축구공 추적에 적합하지 않다. 본 논문에서는 Circular Hough Transform을 이용하여 초기 축구공의 위치를 찾아내고, 이전 프레임의 축구공 템플릿을 이용하여 축구공을 추적하고 가려짐 상황에서는 가려짐 처리 알고리즘을 적용한다. 축구공 추적을 위하여, 매칭 스코어를 이용하여 축구공의 가려짐 상황을 판단한다. 가려짐 상태에서 축구공 후보들을 찾고 이전 프레임과의 매칭을 통해 이전 프레임에 존재하는 축구공 후보들은 축구공이 아니며, 새롭게 나타나는 축구공 후보가 축구공일 것이라는 가정을 적용하여 축구공 가려짐 처리 알고리즘을 제안한다. 실제 방송용 축구 경기 영상에 적용하여 제안된 알고리즘이 가려짐 상황을 효과적으로 처리함을 보여준다.

Face Recognition Robust to Local Distortion Using Modified ICA Basis Image

  • Kim Jong-Sun;Yi June-Ho
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2006년도 하계학술대회
    • /
    • pp.251-257
    • /
    • 2006
  • The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization)and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architecture II, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortion

  • PDF

시각적 가려짐을 극복하는 강인한 유기물 탐지 기법 (Robust Detection Technique for Abandoned Objects to Overcome Visual Occlusion)

  • 김원
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.23-29
    • /
    • 2010
  • 오늘날은 사회 안전을 강화하기 위하여 공공장소에서 유기물을 자동으로 검출하는 지능적 비전 감시 시스템을 설계하는 것이 필요한 때이다. 그런데, 이미 인지된 유기물의 일부분 또는 전체는 주변사람들로 가려질 수가 있다. 필수 지표 중 하나인 PAT를 개선하기 위해서는 시스템이 이러한 가려짐 문제를 극복해야만 한다. 이 연구에서는 이러한 가려짐 문제를 고려하여 강인한 검출시스템을 구축하기 위해서 여러 단계로 구성된 새로운 설계 기법을 제안한다. 제안된 시스템의 유용성을 보이기 위하여 6개의 다양한 상황을 포함하는 이미지 스트림에 대해서 평가를 시행했고, 그 실험 결과는 침입과 유기 행위에 대해 각각 96%와 75%의 성능을 보인다. 마지막으로 다수의 사람에 의한 가림 현상에도 불구하고 제안된 시스템은 계속적으로 유기물을 인지하는 성능을 보이고 있다.

폐색 이미지 분류를 위한 강건한 가중치 전환 학습 (The Robust Weight Conversion Learning for Classification of Occlusion Images)

  • 김정훈;유제광;박성식
    • 로봇학회논문지
    • /
    • 제18권1호
    • /
    • pp.122-126
    • /
    • 2023
  • An unexpected occlusion in a real life, not in a laboratory, can be more fatal to neural networks than expected. In addition, it is virtually impossible to create a network that learns all the environmental changes as well as occlusions. Therefore, we propose an alternative approach in which the architecture and number of parameters remain unchanged while adapting to occlusion circumstances. Learning method with the term Conversion Learning classifies them more robustly by converting the weights from various occlusion situations. The experiments on MNIST dataset showed a 3.07 [%p] performance improvement over the baseline CNN model in a situation where most objects are occluded and unknowing what occlusion will appear in advance. The experimental results suggest that Conversion Learning is an efficient method to respond to environmental changes such as occluded images.

어파인-자기 회귀 모델과 강인 통계를 사용한 교통 표지판 추적 (Road Sign Tracking using Affine-AR Model and Robust Statistics)

  • 윤창용;천민규;이희진;김은태;박민용
    • 대한전자공학회논문지SP
    • /
    • 제46권5호
    • /
    • pp.126-134
    • /
    • 2009
  • 본 논문은 움직이는 차 안에서 교통 표지판을 추적하는 영상 기반 시스템을 기술한다. 제안된 시스템은 복잡한 환경에서 강인한 추적의 성능을 위해 파티클 필터를 기반으로 하는 기본 구조를 가진다. 실제 환경에서 표지판을 실시간으로 추적하는 경우, 장애물에 의한 겹침 현상과 빠르게 변하는 도로 상황 때문에 시계열 데이터인 상태 정보를 예측하는 것은 많은 어려움이 있다. 따라서 본 논문에서는 이러한 단점을 해결하기 위하여 어파인 변환의 파라미터를 상태 정보로 사용한 자기 회귀 모델을 파티클 필터의 상태 전이 모델로써 사용하고, 강인 통계를 사용하여 장애물에 의한 겹침 현상을 판단하여 추적 성능을 향상시키는 알고리즘을 제안한다. 본 논문의 실험 결과에서는 본 논문에서 제안된 방법이 주행 중 실시간 추적을 위하여 효과적이며, 장애물에 의해 표지판이 겹치는 경우에도 추적이 잘 수행됨을 보인다.

Robust human tracking via key face information

  • Li, Weisheng;Li, Xinyi;Zhou, Lifang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5112-5128
    • /
    • 2016
  • Tracking human body is an important problem in computer vision field. Tracking failures caused by occlusion can lead to wrong rectification of the target position. In this paper, a robust human tracking algorithm is proposed to address the problem of occlusion, rotation and improve the tracking accuracy. It is based on Tracking-Learning-Detection framework. The key auxiliary information is used in the framework which motivated by the fact that a tracking target is usually embedded in the context that provides useful information. First, face localization method is utilized to find key face location information. Second, the relative position relationship is established between the auxiliary information and the target location. With the relevant model, the key face information will get the current target position when a target has disappeared. Thus, the target can be stably tracked even when it is partially or fully occluded. Experiments are conducted in various challenging videos. In conjunction with online update, the results demonstrate that the proposed method outperforms the traditional TLD algorithm, and it has a relatively better tracking performance than other state-of-the-art methods.

Disjoint Particle Filter to Track Multiple Objects in Real-time

  • Chai, YoungJoon;Hong, Hyunki;Kim, TaeYong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권5호
    • /
    • pp.1711-1725
    • /
    • 2014
  • Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.

Video-based Height Measurements of Multiple Moving Objects

  • Jiang, Mingxin;Wang, Hongyu;Qiu, Tianshuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제8권9호
    • /
    • pp.3196-3210
    • /
    • 2014
  • This paper presents a novel video metrology approach based on robust tracking. From videos acquired by an uncalibrated stationary camera, the foreground likelihood map is obtained by using the Codebook background modeling algorithm, and the multiple moving objects are tracked by a combined tracking algorithm. Then, we compute vanishing line of the ground plane and the vertical vanishing point of the scene, and extract the head feature points and the feet feature points in each frame of video sequences. Finally, we apply a single view mensuration algorithm to each of the frames to obtain height measurements and fuse the multi-frame measurements using RANSAC algorithm. Compared with other popular methods, our proposed algorithm does not require calibrating the camera, and can track the multiple moving objects when occlusion occurs. Therefore, it reduces the complexity of calculation and improves the accuracy of measurement simultaneously. The experimental results demonstrate that our method is effective and robust to occlusion.