KSII Transactions on Internet and Information Systems (TIIS)
/
v.8
no.5
/
pp.1711-1725
/
2014
Multi-target tracking is the main purpose of many video surveillance applications. Recently, multi-target tracking based on the particle filter method has achieved robust results by using the data association process. However, this method requires many calculations and it is inadequate for real time applications, because the number of associations exponentially increases with the number of measurements and targets. In this paper, to reduce the computational cost of the data association process, we propose a novel multi-target tracking method that excludes particle samples in the overlapped predictive region between the target to track and marginal targets. Moreover, to resolve the occlusion problem, we define an occlusion mode with the normal dynamic mode. When the targets are occluded, the mode is switched to the occlusion mode and the samples are propagated by Gaussian noise without the sampling process of the particle filter. Experimental results demonstrate the robustness of the proposed multi-target tracking method even in occlusion.
Journal of Institute of Control, Robotics and Systems
/
v.15
no.5
/
pp.505-510
/
2009
In recent years the space where a robot works has been expanding to the human space unlike traditional industrial robots that work only at fixed positions apart from humans. A human in the recent situation may be the owner of a robot or the target in a robotic application. This paper deals with the latter case; when a robot vision system is employed to monitor humans for a surveillance application, each person in a scene needs to be identified. Humans, however, often move together, and occlusions between them occur frequently. Although this problem has not been seriously tackled in relevant literature, it brings difficulty into later image analysis steps such as tracking and scene understanding. In this paper, a probabilistic neural network is employed to learn the patterns of the best dividing position along the top pixels of an image region of partly occlude people. As this method uses only shape information from an image, it is simple and can be implemented in real time.
In this paper, we propose an occlusion compensation algorithm which is used for virtual view generation. In general, since occlusion region is recovered from neighboring pixels by taking the mean value or median value of neighbor pixels, the visual characteristics of a given image are not considered and consequently the accuracy of the compensated occlusion regions is not guaranteed. To solve these problem, we propose an algorithm that considers primary visual characteristics of a given image to compensate the occluded regions by using seam carving algorithm. In the proposed algorithm, we first use Sobel mask to obtain the edge map of a given image and then make it binary digit 0 or 1 and finally thinning process follows. Then, the energy patterns of original and thinned edge map obtained by the modified seam carving method are used to compensate the occlusion regions. Through experiments with many test images, we verify that the proposed algorithm performed better than conventional algorithms.
Journal of the Institute of Electronics and Information Engineers
/
v.53
no.5
/
pp.132-140
/
2016
In this paper, we propose boundary-preserving stereo matching method based on adaptive disparity adjustment using confidence region detection. To find the initial disparity map, we compute data cost using the color space (CIE Lab) combined with the gradient space and apply double cost aggregation. We perform left/right consistency checking to sort out the mismatched region. This consistency check typically fails for occluded and mismatched pixels. We mark a pixel in the left disparity map as "inconsistent", if the disparity value of its counterpart pixel differs by a value larger than one pixel. In order to distinguish errors caused by the disparity discontinuity, we first detect the confidence map using the Mean-shift segmentation in the initial disparity map. Using this confidence map, we then adjust the disparity map to reduce the errors in initial disparity map. Experimental results demonstrate that the proposed method produces higher quality disparity maps by successfully preserving disparity discontinuities compared to existing methods.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.41
no.3
/
pp.35-49
/
2004
This paper proposes a new glasses removal method from color frontal facial image to generate gray glassless facial image. The proposed method is based on recursive PCA reconstruction. For the generation of glassless images, the occluded region by glasses should be found, and a good reconstructed image to compensate with should be obtained. The recursive PCA reconstruction Provides us with both of them simultaneously, and finally produces glassless facial images. This paper shows the effectiveness of the proposed method by some experimental results. We believe that this method can be applied to removing other type of occlusion than the glasses with some modification and enhancing the performance of a face recognition system.
In this study the occlusion of dural-sac. the outer membrane of spinal cord in the lumbar region. was quantitatively analyzed using one motion segment finite element model. Occlusion was quantified by calculating cross sectional area change of dural-sac for different compressive impact duration (loading rate) due to bony fragment at the posterior wall of the cortical shell in vertebral body. Dural-sac was occluded most highly in the range of 8∼12 msec impact duration by the bony fragment intruding into the spinal canal. $\Delta$t = 400 msec case 4 % cross sectional area change was calculated. which is the same as the cross sectional area change under 6 kN of static compressive loading.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.11
no.11
/
pp.5436-5458
/
2017
Automatic Video Surveillance System (AVSS) has become important to computer vision researchers as crime has increased in the twenty-first century. As a new branch of AVSS, baggage detection has a wide area of security applications. Some of them are, detecting baggage in baggage restricted super shop, detecting unclaimed baggage in public space etc. However, in this paper, a detection & classification framework of baggage is proposed. Initially, background subtraction is performed instead of sliding window approach to speed up the system and HSI model is used to deal with different illumination conditions. Then, a model is introduced to overcome shadow effect. Then, occlusion of objects is detected using proposed mirroring algorithm to track individual objects. Extraction of rotational signal descriptor (SP-RSD-HOG) with support plane from Region of Interest (ROI) add rotation invariance nature in HOG. Finally, dynamic human body parameter setting approach enables the system to detect & classify single or multiple pieces of carried baggage even if some portions of human are absent. In baggage detection, a strong classifier is generated by boosting similarity measure based multi layer Support Vector Machine (SVM)s into HOG based SVM. This boosting technique has been used to deal with various texture patterns of baggage. Experimental results have discovered the system satisfactorily accurate and faster comparative to other alternatives.
Korean Journal of Computational Design and Engineering
/
v.8
no.2
/
pp.65-74
/
2003
For virtual reality, virtual manufacturing system, or simulation based design, we need to visualize very large and complex 3D models which are comprising of very large number of polygons. To overcome the limited hardware performance and to attain smooth realtime visualization, there have been many researches about algorithms which reduce the number of polygons to be processed by graphics hardware. One of these algorithms, occlusion culling is a method of rejecting the objects which are not visible because they are occluded by other objects, and then passing only the visible objects to graphics hardware. Existing occlusion culling algorithms have some shortcomings such as the required long preprocessing time, the limitation of occluder shape, or the need for special hardware implementation. In this study, an efficient occlusion culling algorithm is proposed. The proposed algorithm reads and analyzes Z-buffer of graphics hardware using Microsoft DirectX, and then determines each object's visibility. This proposed algorithm can speed up visualization by reading Z-buffer using DirectX which can access hardware directly compared to OpenGL, by reading only the region to which each object is projected instead of reading the whole Z-Buffer, and the proposed algorithm can perform more exact visibility test by using simplified model instead of using bounding box. For evaluation, the proposed algorithm was applied to very large polygonal models. And smooth realtime visualization was attained.
In this paper, we suggest a novel method of selecting visual information based on bottom-up visual attention of human. We propose a new model that improve accuracy of detecting attention region by using depth information in addition to low-level spatial features such as color, lightness, orientation, form and temporal feature such as motion. Motion is important cue when we derive temporal saliency. But noise obtained during the input and computation process deteriorates accuracy of temporal saliency Our system exploited the result of psychological studies in order to remove the noise from motion information. Although typical systems get problems in determining the saliency if several salient regions are partially occluded and/or have almost equal saliency, our system is able to separate the regions with high accuracy. Spatiotemporally separated prominent regions in the first stage are prioritized using depth value one by one in the second stage. Experiment result shows that our system can describe the salient regions with higher accuracy than the previous approaches do.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.40
no.3
/
pp.127-136
/
2003
In this paper, we propose a robust object tracking algorithm based on model and edge, using deformed template and Level-Set theory. The proposed algorithm can track objects in case of background variation, object flexibility and occlusions. First we design a new potential difference energy function(PDEF) composed of two terms including inter-region distance and edge values. This function is utilized to estimate and refine the object shape. The first step is to approximately estimate the shape and location of template object based on the assumption that the object changes its shape according to the affine transform. The second step is a refinement of the object shape to fit into the real object accurately, by using the potential energy map and the modified Level-Set speed function. The experimental results show that the proposed algorithm can track non-rigid objects under various environments, such as largely flexible objects, objects with large variation in the backgrounds, and occluded objects.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.