• Title/Summary/Keyword: Occasional track

Search Result 3, Processing Time 0.021 seconds

Safe Navigation Plan for Dredging Operations to build Sunken Tunnel for Access Road between Busan-Geoje (부산-거제간 연결도로 침매터널공사의 준설작업에 따른 안전통항방안)

  • Kim, Jung-Hoon;Gug, Seung-Gi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.509-514
    • /
    • 2006
  • This research does by purpose that present safe navigation plan for ships during doing dredging construction with dredger crossing waterway of Gadeok. Dredging operations need to build sunken tunnel that cross the bottom of the sea under waterway of Gadeok for access road construction between Busan- Geoje. Accordingly, dredger must cross and dredge waterway of Gadeok fatally. There is possibility of marine accident of collision for latent danger situation of ships to navigate waterway of Gadeok relatively. Therefore, safe navigation plan of ship is groped in reply and its countermeasure is presented.

  • PDF

A Field Survey of Noise Associated with Subway Train Passage (지하철 연도변의 소음 조사)

  • Son Jung Gon
    • Explosives and Blasting
    • /
    • v.11 no.2
    • /
    • pp.60-68
    • /
    • 1993
  • The noise and vibration generated by the subway rolling stocks operated along the Seoul Subway Line No.1, 2, 3, and 4 lead to a controversy of pollution problem especially in residential areas. However, there is no data or guide to define the damage or provide adequate protection against such pollutions. The field measurements were made to characterize the noise attenuation due to distance, noise level distribution around the subway track of the aboveground and underground parts of each Line. The assessment criteria and methods are considered in addition to the practical available noise control methods. The noise level measured at Line No. 1 and 3 are less than 60 dB(A) with no pollution problem. Only a part of the aboveground section of Line No.2 and 4 indicates severe noise pollution. The effective boundary of these areas exposed to 70dB (A) noise are within 50m from the track centerline of No.2 line and 25m of No.4 line. The residents file a strong complaints whenever the noise level exceeds the 80dB (A) , and an occasional complaints between 70 to 80 dB(A). The distribution of high level noise of 80 dB(A) occurs within 25m from the track centerline of the overbridge, 12.5m of the short steel bridge, and about loom of the long steel bridge such as Dangsan Bridge. The intermediate noise level of 70 to 80 dB(A) is recorded within 50m from the overbridge, U-type retaining structure, and short steel structure, and 280m from the long steel bridge. The results presented in this paper can be used to understand the characteristics of the noise pollution along the Seoul Subway now In operation, and used as a guide to improve the existing noise pollution problems.

  • PDF

RESEARCH TRENDS IN THE CELLULOSE REINFORCED FIBROUS CONCRETE IN USA

  • Soroushian, Parviz;Ravanbakhsh, Sizvosh
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.3-23
    • /
    • 1997
  • The growth in fast-track construction and repair has prompted major efforts to develop high-early-strength concrete mix compositions. Such mixtures rely on the use of relatively high cement contents and accelerator dosages to increase the rate of strength development. The measures, however, seem to compromise the long-term performance of concrete in applications such as full-depth patches as evidenced by occasional premature deterioration of such patches. The hypothesis successfully validated in this research was that traditional methods of increasing the early-age strength of concrete, involving the use of high cement and accelerator contents, increase the moisture and thermal movements of concrete. Restraint of such movements in actual field conditions, by external or internal restraining factors, generates tensile stresses which introduced microcracks and thus increase the permeability of concrete. This increase in permeability accelerates various processes of concrete deterioration, including freeze-thaw attack. Fiver reinforcement of concrete is an effective approach to the control of microcrack and crack development under tensile stresses. Fibers, however, have not been known of accelerating the process of strength gain in concrete. The recently developed specialty cellulose fibers, however, were found in this research to be highly effective in increasing the early-age strength of concrete. This provides a unique opportunity to increase the rate of strength gain in concrete without increasing moisture an thermal movements, which actually controlling the processes of microcracking and racking in concrete. Laboratory test results confirmed the desirable resistance of specialty cellulose fiber reinforced High-early-strength concrete to restrained shrinkage microcracking an cracking, and to different processes of deterioration under weathering effects.

  • PDF