• Title/Summary/Keyword: Obstacle avoidance system

Search Result 235, Processing Time 0.032 seconds

Real time obstacle avoidance for autonomous mobile robot (이동 로봇의 실시간 충돌회피)

  • 권영도;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.434-439
    • /
    • 1993
  • This paper present a sensor based obstacle avoidance method which is based on a VFH(Vector Field Histogram) method. The basic idea of obstacle avoidance is to find a minimum obstacle direction and distance. From the minimum sonar index and the target direction high level system determine steering angle of mobile robot. The sonar sensor system consists of 12 ultra sonic sensor, and each sensor have its direction and safety value. This method has advantage on calculation speed and small memory. This method is implemented on indoor autonomous vehicle'ALiVE-2'.

  • PDF

3D Vision-Based Local Path Planning System of a Humanoid Robot for Obstacle Avoidance

  • Kang, Tae-Koo;Lim, Myo-Taeg;Park, Gwi-Tae;Kim, Dong W.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.879-888
    • /
    • 2013
  • This paper addresses the vision based local path planning system for obstacle avoidance. To handle the obstacles which exist beyond the field of view (FOV), we propose a Panoramic Environment Map (PEM) using the MDGHM-SIFT algorithm. Moreover, we propose a Complexity Measure (CM) and Fuzzy logic-based Avoidance Motion Selection (FAMS) system to enable a humanoid robot to automatically decide its own direction and walking motion when avoiding an obstacle. The CM provides automation in deciding the direction of avoidance, whereas the FAMS system chooses the avoidance path and walking motion, based on environment conditions such as the size of the obstacle and the available space around it. The proposed system was applied to a humanoid robot that we designed. The results of the experiment show that the proposed method can be effectively applied to decide the avoidance direction and the walking motion of a humanoid robot.

Obstacle Avoidance Method for Multi-Agent Robots Using IR Sensor and Image Information (IR 센서와 영상정보를 이용한 다 개체 로봇의 장애물 회피 방법)

  • Jeon, Byung-Seung;Lee, Do-Young;Choi, In-Hwan;Mo, Young-Hak;Park, Jung-Min;Lim, Myo-Taeg
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.12
    • /
    • pp.1122-1131
    • /
    • 2012
  • This paper presents obstacle avoidance method for scout robot or industrial robot in unknown environment by using IR sensor and vision system. In the proposed method, robots share the information where the obstacles are located in real-time, thus the robots can choose the best path for obstacle avoidance. Using IR sensor and vision system, multiple robots efficiently evade the obstacles by the proposed cooperation method. No landmark is used at wall or floor in experiment environment. The obstacles don't have specific color or shape. To get the information of the obstacle, vision system extracts the obstacle coordinate by using an image labeling method. The information obtained by IR sensor is about the obstacle range and the locomotion direction to decide the optimal path for avoiding obstacle. The experiment was conducted in $7m{\times}7m$ indoor environment with two-wheeled mobile robots. It is shown that multiple robots efficiently move along the optimal path in cooperation with each other in the space where obstacles are located.

Intelligent Obstacle Avoidance Algorithm for Autonomous Control of Underwater Flight Vehicle (수중비행체의 자율제어를 위한 지능형 장애물회피 알고리즘)

  • Kim, Hyun-Sik;Jin, Tae-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.5
    • /
    • pp.635-640
    • /
    • 2009
  • In real system application, the obstacle avoidance system for the autonomous control of the underwater flight vehicle (UFV) operates with the following problems: it has local information because the sonar can only offer the obstacle information in a local detection area, it requires a continuous control input because the system that has reduced acoustic noise and power consumption is necessary, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an intelligent obstacle avoidance algorithm using the evolution strategy (ES) and the fuzzy logic controller (FLC), is proposed. To verify the performance of the proposed algorithm, the obstacle avoidance of UFV is performed. Simulation results show that the proposed algorithm effectively solves the problems in the real system application.

3D Depth Camera-based Obstacle Detection in the Active Safety System of an Electric Wheelchair (전동휠체어 주행안전을 위한 3차원 깊이카메라 기반 장애물검출)

  • Seo, Joonho;Kim, Chang Won
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.7
    • /
    • pp.552-556
    • /
    • 2016
  • Obstacle detection is a key feature in the safe driving control of electric wheelchairs. The suggested obstacle detection algorithm was designed to provide obstacle avoidance direction and detect the existence of cliffs. By means of this information, the wheelchair can determine where to steer and whether to stop or go. A 3D depth camera (Microsoft KINECT) is used to scan the 3D point data of the scene, extract information on obstacles, and produce a steering direction for obstacle avoidance. To be specific, ground detection is applied to extract the obstacle candidates from the scanned data and the candidates are projected onto a 2D map. The 2D map provides discretized information of the extracted obstacles to decide on the avoidance direction (left or right) of the wheelchair. As an additional function, cliff detection is developed. By defining the "cliffband," the ratio of the predefined band area and the detected area within the band area, the cliff detection algorithm can decide if a cliff is in front of the wheelchair. Vehicle tests were carried out by applying the algorithm to the electric wheelchair. Additionally, detailed functions of obstacle detection, such as providing avoidance direction and detecting the existence of cliffs, were demonstrated.

Obstacle Avoidance and Path Planning for a Mobile Robot Using Single Vision System and Fuzzy Rule (모노비전과 퍼지규칙을 이용한 이동로봇의 경로계획과 장애물회피)

  • 배봉규;이원창;강근택
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.274-277
    • /
    • 2000
  • In this paper we propose new algorithms of path planning and obstacle avoidance for an autonomous mobile robot with vision system. Distance variation is included in path planning to approach the target point and avoid obstacles well. The fuzzy rules are also applied to both trajectory planning and obstacle avoidance to improve the autonomy of mobile robot. It is shown by computer simulation that the proposed algorithm is working well.

  • PDF

Experimental Verification of Obstacle Avoidance Algorithm ELA Applicable to Rescue Robots (구조로봇에 적합한 장애물 회피 알고리즘 ELA의 실험적 검증)

  • Jeong, Hae-Kwan;Hyun, Kyung-Hak;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.105-111
    • /
    • 2009
  • In this paper, we provide experimental results and verification for obstacle avoidance algorithm 'ELA(Emergency Level Around)', which is applicable to rescue robots. ELA is a low level intelligence-based obstacle avoidance algorithm, so can be used in fast mobile robots requiringhigh speed in operation with little computational load. Constructed system for experiments consist of laptop, sensors, peripheral devices and mobile robot platform VSTR(Variable Single-tracked Robot) to realize predetermined scenarios. Finally, experiment was conducted in indoor surroundings including miscellaneous things as well as dark environment to show fitness and robustness of ELA for rescue, and it is shown that VSTR navigates endowed area well with real-time obstacle avoidance based on ELA. Therefore, it is concluded that ELA can be a candidate algorithm to increase mobility of rescue robots in real situation.

  • PDF

Obstacle Avoidance of Mobile Robot Using Distributed Fuzzy Control with Imitation of Potential Field (Potential Field 모방 분산 퍼지 제어를 통한 이동 로봇의 장애물 회피)

  • Kwak, Hwan-Joo;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.378-380
    • /
    • 2009
  • For the autonomous movement, the optimal pat]1 planning connecting between current and target positions is essential, and the optimal path of mobile robot means obstacle-free and the shortest length path to a target position. Many actual mobile robots should move without any information of surrounded obstacles. This paper suggests a new method of obstacle avoidment which is suitable in unknown environments. This method of obstacle avoidance is designed with a distributed fuzzy control system, and imitates a Potential Field method. A simulation confirms the performance and correctness of the obstacle avoidance.

  • PDF

An Obstacle Avoidance Trajectory Planning for a Quadruped Walking Robot Using Vision and PSD sensor

  • Kong, Jung-Shik;Lee, Bo-Hee;Kim, Jin-Geol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.105.1-105
    • /
    • 2002
  • $\textbullet$ This paper deals with obstacle avoidance of a quadruped robot with a vision system and a PSD sensor. $\textbullet$ The vision system needs for obstacle recognition toward robot. $\textbullet$ Ths PSD sensor is also important element for obstacle recognition. $\textbullet$ We propose algorithm that recognizes obstacles with one vision and PSD sensor. $\textbullet$ We also propose obstacle avoidance algorithm with map from obstacle recognition algorithm. $\textbullet$ Using these algorithm, Quadruped robot can generate gait trajectory. $\textbullet$ Therefore, robot can avoid obstacls, and can move to target point.

  • PDF

Implementation of an Obstacle Avoidance System Based on a Low-cost LiDAR Sensor for Autonomous Navigation of an Unmanned Ship (무인선박의 자율운항을 위한 저가형 LiDAR센서 기반의 장애물 회피 시스템 구현)

  • Song, HyunWoo;Lee, Kwangkook;Kim, Dong Hun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.480-488
    • /
    • 2019
  • In this paper, we propose an obstacle avoidance system for an unmanned ship to navigate safely in dynamic environments. Also, in this paper, one-dimensional low-cost lidar sensor is used, and a servo motor is used to implement the lidar sensor in a two-dimensional space. The distance and direction of an obstacle are measured through the two-dimensional lidar sensor. The unmanned ship is controlled by the application at a Tablet PC. The user inputs the coordinates of the destination in Google maps. Then the position of the unmanned ship is compared with the position of the destination through GPS and a geomagnetic sensor. If the unmanned ship finds obstacles while moving to its destination, it avoids obstacles through a fuzzy control-based algorithm. The paper shows that the experimental results can effectively construct an obstacle avoidance system for an unmanned ship with a low-cost LiDAR sensor using fuzzy control.