• Title/Summary/Keyword: Obstacle Recognition System

Search Result 86, Processing Time 0.029 seconds

Improved Environment Recognition Algorithms for Autonomous Vehicle Control (자율주행 제어를 위한 향상된 주변환경 인식 알고리즘)

  • Bae, Inhwan;Kim, Yeounghoo;Kim, Taekyung;Oh, Minho;Ju, Hyunsu;Kim, Seulki;Shin, Gwanjun;Yoon, Sunjae;Lee, Chaejin;Lim, Yongseob;Choi, Gyeungho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.35-43
    • /
    • 2019
  • This paper describes the improved environment recognition algorithms using some type of sensors like LiDAR and cameras. Additionally, integrated control algorithm for an autonomous vehicle is included. The integrated algorithm was based on C++ environment and supported the stability of the whole driving control algorithms. As to the improved vision algorithms, lane tracing and traffic sign recognition were mainly operated with three cameras. There are two algorithms developed for lane tracing, Improved Lane Tracing (ILT) and Histogram Extension (HIX). Two independent algorithms were combined into one algorithm - Enhanced Lane Tracing with Histogram Extension (ELIX). As for the enhanced traffic sign recognition algorithm, integrated Mutual Validation Procedure (MVP) by using three algorithms - Cascade, Reinforced DSIFT SVM and YOLO was developed. Comparing to the results for those, it is convincing that the precision of traffic sign recognition is substantially increased. With the LiDAR sensor, static and dynamic obstacle detection and obstacle avoidance algorithms were focused. Therefore, improved environment recognition algorithms, which are higher accuracy and faster processing speed than ones of the previous algorithms, were proposed. Moreover, by optimizing with integrated control algorithm, the memory issue of irregular system shutdown was prevented. Therefore, the maneuvering stability of the autonomous vehicle in severe environment were enhanced.

A Study on Obstacle Detection for Mobile Robot Navigation (이동형 로보트 주행을 위한 장애물 검출에 관한 연구)

  • Yun, Ji-Ho;Woo, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.587-589
    • /
    • 1995
  • The safe navigation of a mobile robot requires the recognition of the environment in terms of vision processing. To be guided in the given path, the robot should acquire the information about where the wall and corridor are located. Also unexpected obstacles should be detected as rapid as possible for the safe obstacle avoidance. In the paper, we assume that the mobile robot should be navigated in the flat surface. In terms of this assumption we simplify the correspondence problem by the free navigation surface and matching features in that coordinate system. Basically, the vision processing system adopts line segment of edge as the feature. The extracted line segments of edge out of both image are matched in the free nevigation surface. According to the matching result, each line segment is labeled by the attributes regarding obstacle and free surface and the 3D shape of obstacle is interpreted. This proposed vision processing method is verified in terms of various simulations and experimentation using real images.

  • PDF

A Study on Autonomous Driving Mobile Robot by using Intelligent Algorithm

  • Seo, Hyun-Jae;Kim, Hyo-Jae;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.543-547
    • /
    • 2005
  • In this paper, we designed a intelligent autonomous driving robot by using Fuzzy algorithm. The object of designed robot is recognition of obstacle, avoidance of obstacle and safe arrival. We append a suspension system to auxiliary wheel for improvement in stability and movement. The designed robot can arrive at destination where is wanted to go by the old and the weak and the handicapped at indoor hospital and building.

  • PDF

A Study on Precise Control of Autonomous Travelling Robot Based on RVR (RVR에 의한 자율주행로봇의 정밀제어에 관한연구)

  • Shim, Byoung-Kyun;Cong, Nguyen Huu;Kim, Jong-Soo;Ha, Eun-Tae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.42-53
    • /
    • 2014
  • Robust voice recognition (RVR) is essential for a robot to communicate with people. One of the main problems with RVR for robots is that robots inevitably real environment noises. The noise is captured with strong power by the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot's own motions and postures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In this paper, we propose an RVR system which can robustly recognize voice by adults and children in noisy environments. We evaluate the RVR system in a communication robot placed in a real noisy environment. Voice is captured using a wireless microphone. Navigation Strategy is shown Obstacle detection and local map, Design of Goal-seeking Behavior and Avoidance Behavior, Fuzzy Decision Maker and Lower level controller. The final hypothesis is selected based on posterior probability. We then select the task in the motion task library. In the motion control, we also integrate the obstacle avoidance control using ultrasonic sensors. Those are powerful for detecting obstacle with simple algorithm.

Test bed for autonomous controlled space robot (우주로봇 자율제어 테스트 베드)

  • 최종현;백윤수;박종오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1828-1831
    • /
    • 1997
  • this paper, to represent the robot motion approximately in space, delas with algorithm for position recognition of space robot, target and obstacle with vision system in 2-D. And also there are algorithms for precise distance-measuring and calibration usign laser displacement system, and for trajectory selection for optimizing moving to object, and for robot locomtion with air-thrust valve. And the software synthesizing of these algorithms hleps operator to realize the situation certainly and perform the job without any difficulty.

  • PDF

Design and development of in-wheel motor-based walking assistance system

  • Park, Hyeong-Sam;An, Duk-Keun;Kim, Dong-Cheol;Lee, Sang-Hyun
    • International Journal of Advanced Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.371-376
    • /
    • 2022
  • The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. The purpose of this study is to develop a walking assistance system with mobility support and life support functions so that the elderly with reduced physical ability and patients who are uncomfortable when moving can move comfortably indoors and outdoors, and help social life. An obstacle recognition sensor module that can be applied indoors and outdoors is installed on a lightweight walking aid. It is a system structure of an integrated actuator and brake system that can avoid obstacles in consideration of the safety of the elderly and is easy to install on the device. In this paper, the design of a lightweight walking aid was designed to increase the convenience of the socially disadvantaged and the elderly with reduced exercise ability. In addition, in order to overcome the disadvantage of being inconvenient to use indoors due to the noise and vibration of the motor during operation, an In-Wheel type motor is applied to develop and apply a low noise, low vibration and high efficiency drive system.

Multi-legged robot system enabled to decide route and recognize obstacle based on hand posture recognition (손모양 인식기반의 경로교사와 장애물 인식이 가능한 자율보행 다족로봇 시스템)

  • Kim, Min-Sung;Jeong, Woo-Won;Kwan, Bae-Guen;Kang, Dong-Joong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.8
    • /
    • pp.1925-1936
    • /
    • 2010
  • In this paper, multi-legged robot was designed and produced using stable walking pattern algorithm. The robot had embedded camera and wireless communication function and it is possible to recognize both hand posture and obstacles. The algorithm decided moving paths, and recognized and avoided obstacles through Hough Transform using Edge Detection of inputed image from image sensor. The robot can be controlled by hand posture using Mahalanobis Distance and average value of skin's color pixel, which is previously learned in order to decide the destination. The developed system has shown obstacle detection rate of 96% and hand posture recognition rate of 94%.

A Study on Detection of Object Position and Displacement for Obstacle Recognition of UCT (무인 컨테이너 운반차량의 장애물 인식을 위한 물체의 위치 및 변위 검출에 관한 연구)

  • 이진우;이영진;조현철;손주한;이권순
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1999.10a
    • /
    • pp.321-332
    • /
    • 1999
  • It is important to detect objects movement for obstacle recognition and path searching of UCT(unmanned container transporters) with vision sensor. This paper shows the method to draw out objects and to trace the trajectory of the moving object using a CCD camera and it describes the method to recognize the shape of objects by neural network. We can transform pixel points to objects position of the real space using the proposed viewport. This proposed technique is used by the single vision system based on floor map.

  • PDF

The Obstacle Size Prediction Method Based on YOLO and IR Sensor for Avoiding Obstacle Collision of Small UAVs (소형 UAV의 장애물 충돌 회피를 위한 YOLO 및 IR 센서 기반 장애물 크기 예측 방법)

  • Uicheon Lee;Jongwon Lee;Euijin Choi;Seonah Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.6
    • /
    • pp.16-26
    • /
    • 2023
  • With the growing demand for unmanned aerial vehicles (UAVs), various collision avoidance methods have been proposed, mainly using LiDAR and stereo cameras. However, it is difficult to apply these sensors to small UAVs due to heavy weight or lack of space. The recently proposed methods use a combination of object recognition models and distance sensors, but they lack information on the obstacle size. This disadvantage makes distance determination and obstacle coordination complicated in an early-stage collision avoidance. We propose a method for estimating obstacle sizes using a monocular camera-YOLO and infrared sensor. Our experimental results confirmed that the accuracy was 86.39% within the distance of 40 cm. In addition, the proposed method was applied to a small UAV to confirm whether it was possible to avoid obstacle collisions.

In-Vehicle AR-HUD System to Provide Driving-Safety Information

  • Park, Hye Sun;Park, Min Woo;Won, Kwang Hee;Kim, Kyong-Ho;Jung, Soon Ki
    • ETRI Journal
    • /
    • v.35 no.6
    • /
    • pp.1038-1047
    • /
    • 2013
  • Augmented reality (AR) is currently being applied actively to commercial products, and various types of intelligent AR systems combining both the Global Positioning System and computer-vision technologies are being developed and commercialized. This paper suggests an in-vehicle head-up display (HUD) system that is combined with AR technology. The proposed system recognizes driving-safety information and offers it to the driver. Unlike existing HUD systems, the system displays information registered to the driver's view and is developed for the robust recognition of obstacles under bad weather conditions. The system is composed of four modules: a ground obstacle detection module, an object decision module, an object recognition module, and a display module. The recognition ratio of the driving-safety information obtained by the proposed AR-HUD system is about 73%, and the system has a recognition speed of about 15 fps for both vehicles and pedestrians.