• 제목/요약/키워드: Obstacle Extraction

검색결과 33건 처리시간 0.026초

직선 Edge 추출에 의한 주행방향 및 장애물 검출에 관한 연구 (A study on the proceeding direction and obstacle detection by line edge extraction)

  • 정준익;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.97-100
    • /
    • 1996
  • In this paper, we describe an algorithm which estimate road following direction using the vanishing point property and obstacle detection. This method of detecting the lane markers in a set of continuous lane highway images using linear approximation is presented. This algorithm is designed for accurate and robust extraction of this data as well as high processing speed. Also, this algorithm reckon distance and chase about an obstacle. It include four algorithms which are lane prediction, lane extraction, road following parameter estimation and obstacle detection algorithm. High accuracy was proven by quantitative evaluation using simulated images. Both robustness and the practicality of real time video rate processing were then confirmed through experiment using VTR real road images.

  • PDF

자율주행 차량의 안전성을 위한 도로의 장애물 추출에 대한 기초 연구 (A Basic Study of Obstacles Extraction on the Road for the Stability of Self-driving Vehicles)

  • 박창민
    • Journal of Platform Technology
    • /
    • 제9권2호
    • /
    • pp.46-54
    • /
    • 2021
  • 최근, 차량의 자율주행에 대한 기술이 개발되면서 안정성은 매우 흥미로운 요소로 관심이 증대되고 있다. 그리고 자율주행에 대하여 1980년대 중반부터 전세계의 많은 대학, 연구 센터, 자동차 회사, 그리고 다른 산업의 회사들에 의해 연구 및 개발되고 있다. 본 연구에서는 자율주행 차량의 안전성을 위한 도로의 위협적인 장애물을 자동 추출하는 방안에 대한 기초 연구를 제안한다. 자동차 도로 위에는 다양한 장애물들이 존재하지만, 본 연구에서는 위협적인 장애물은 도로의 중앙에 위치하며 비교적 큰 개체로 정의한다. 먼저, 입력 영상에 대하여 해상도를 달리하여 분할하고 분할된 영역들은 내부 영역과 외부 영역으로 분류한다. 외부 영역은 영상의 경계에 인접하고 내부 영역은 그렇지 않다. 또한, 저해상도 영상에 인접한 영역이 동일한 영역에 포함되면 각 영역은 인접 영역과 병합된다. 그리고 주요한 객체 영역과 주요한 배경 영역은 각각 내부 영역과 외부 영역에서 선택된다. 따라서, 주요한 객체 영역은 면적과 크기 정보를 활용하여 장애물을 대표하는 영역으로 추출된다. 실험을 통하여 제안된 방법이 자동차 자율주행 안전성을 높여 사고와 사상자를 줄일 수 있는 기초연구에 기여할 수 있을 것으로 기대한다.

18관절 2족보행 로봇의 안정한 모션제어에 관한연구 (A Study on Stable Motion Control of Biped Robot with 18 Joints)

  • 박문열;;원종범;박성준;김용길
    • 한국산업융합학회 논문집
    • /
    • 제17권2호
    • /
    • pp.35-41
    • /
    • 2014
  • This paper describes the obstacle avoidance architecture to walk safely around in factory and home environment, and presents methods for path planning and obstacle avoidance for the humanoid robot. Solving the problem of obstacle avoidance for a humanoid robot in an unstructured environment is a big challenge, because the robot can easily lose its stability or fall down if it hits or steps on an obstacle. We briefly overview the general software architecture composed of perception, short and long term memory, behavior control, and motion control, and emphasize on our methods for obstacle detection by plane extraction, occupancy grid mapping, and path planning. A main technological target is to autonomously explore and wander around in home environments as well as to communicate with humans.

무한원점을 이용한 주행방향 추정과 장애물 검출 (The course estimation of vehicle using vanishing point and obstacle detection)

  • 정준익;최성구;노도환
    • 전자공학회논문지S
    • /
    • 제34S권11호
    • /
    • pp.126-137
    • /
    • 1997
  • This paper describes the algorithm which can estimate road following direction and deetect obstacle using a monocular vision system. This algorithm can estimate the course of vehicle using the vanishing point properties and detect obstacle by statistical method. The proposed algorithm is composed of four steps, which are lane prediction, lane extraction, road following parameter estimation and obstacle detection. It is designed for high processing speed and high accuracy. The former is achieved by a small area named sub-windown in lane existence area, the later is realized by using connected edge points of lane. We would like to present that the new mehod can detect obstacle using the simple statistical method. The paracticalities of the processing speed, the accuracy of the algorithm and proposing obstacle detection method, have been justified through the experiment applied VTR image of the real road to the algorithm.

  • PDF

단일 2차원 라이다 기반의 다중 특징 비교를 이용한 장애물 분류 기법 (Obstacle Classification Method using Multi Feature Comparison Based on Single 2D LiDAR)

  • 이무현;허수정;박용완
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.253-265
    • /
    • 2016
  • We propose an obstacle classification method using multi-decision factors and decision sections based on Single 2D LiDAR. The existing obstacle classification method based on single 2D LiDAR has two specific advantages: accuracy and decreased calculation time. However, it was difficult to classify obstacle type, and therefore accurate path planning was not possible. To overcome this problem, a method of classifying obstacle type based on width data was proposed. However, width data was not sufficient to enable accurate obstacle classification. The proposed algorithm of this paper involves the comparison between decision factor and decision section to classify obstacle type. Decision factor and decision section was determined using width, standard deviation of distance, average normalized intensity, and standard deviation of normalized intensity data. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 2D LiDAR-based method, thus demonstrating the possibility of obstacle type classification using single 2D LiDAR.

화상 정보를 이용한 이동 로봇의 장애물 회피 알고리즘 (Obstacle Avoidance Algorithm of a Mobile Robot using Image Information)

  • 권오상;이응혁;한영환;홍승홍
    • 전기전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.139-149
    • /
    • 1998
  • 이동로봇의 주행에 있어서 단일센서만으로는 문제점들이 있다. 이러한 문제에 대하여 본 논문에서는 초음파센서와 카메라의 장점을 취한 시스템을 제안한다. 또한 이동로봇의 주행동안에 장애물을 회피하기 위한 좌표추출 알고리즘을 제안한다. 이동로봇의 전반부에 카메라를 장착하였으며 제안된 알고리즘의 유용성을 검증하기 위한 실험을 하였다. 실험결과 초음파 센서만을 사용하는 경우보다 영상센서를 사용하는 경우에 에러율이 줄어 들었다. 또한 측정된 값들을 사용하여 장애물을 회피하기 위한 경로를 생성할 수 있다.

  • PDF

기하학적 해석을 이용한 비전 기반의 장애물 검출 (Vision-based Obstacle Detection using Geometric Analysis)

  • 이종실;이응혁;김인영;김선일
    • 전자공학회논문지SC
    • /
    • 제43권3호
    • /
    • pp.8-15
    • /
    • 2006
  • 이동 로봇의 많은 응용분야에서 장애물을 검출하는 것은 중요한 요소이다. 스테레오 비전과 광류를 이용하여 장애물을 검출하는 방법은 복잡한 연산을 요구하므로 본 논문에서는 단지 두 장면의 영상만을 이용하여 비전 기반 장애물 검출 방법을 제시하고 단일 카메라와 주행거리계를 사용하여 실시간 처리가 가능하도록 하였다. 제안한 방법은 두 장면으로부터 3차원 복원을 수행함으로서 장애물을 검출하는 방법으로 먼저 두 장면의 입력영상 각각에 대하여 Lowe의 SIFT를 사용하여 특징점을 추출하고 이들 간의 대응점을 구한다. 그리고 주행거리계로부터 주어지는 회전과 병진행렬 값들과 삼각법을 이용하여 대응점들에 대한 3차원 위치를 구한다. 이렇게 삼각법에 의해 얻어진 결과는 장애물들에 대한 부분적인 3차원 복원을 의미한다. 제안한 방법은 실내에서 주행하는 이동 로봇에 적용하였을 때 좋은 결과를 얻을 수 있었으며, 75msec의 속도로 장애물을 검출할 수 있었다.

Obstacles modeling method in cluttered environments using satellite images and its application to path planning for USV

  • Shi, Binghua;Su, Yixin;Zhang, Huajun;Liu, Jiawen;Wan, Lili
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.202-210
    • /
    • 2019
  • The obstacles modeling is a fundamental and significant issue for path planning and automatic navigation of Unmanned Surface Vehicle (USV). In this study, we propose a novel obstacles modeling method based on high resolution satellite images. It involves two main steps: extraction of obstacle features and construction of convex hulls. To extract the obstacle features, a series of operations such as sea-land segmentation, obstacles details enhancement, and morphological transformations are applied. Furthermore, an efficient algorithm is proposed to mask the obstacles into convex hulls, which mainly includes the cluster analysis of obstacles area and the determination rules of edge points. Experimental results demonstrate that the models achieved by the proposed method and the manual have high similarity. As an application, the model is used to find the optimal path for USV. The study shows that the obstacles modeling method is feasible, and it can be applied to USV path planning.

어안 이미지 기반의 움직임 추정 기법을 이용한 전방향 영상 SLAM (Omni-directional Vision SLAM using a Motion Estimation Method based on Fisheye Image)

  • 최윤원;최정원;대염염;이석규
    • 제어로봇시스템학회논문지
    • /
    • 제20권8호
    • /
    • pp.868-874
    • /
    • 2014
  • This paper proposes a novel mapping algorithm in Omni-directional Vision SLAM based on an obstacle's feature extraction using Lucas-Kanade Optical Flow motion detection and images obtained through fish-eye lenses mounted on robots. Omni-directional image sensors have distortion problems because they use a fish-eye lens or mirror, but it is possible in real time image processing for mobile robots because it measured all information around the robot at one time. In previous Omni-Directional Vision SLAM research, feature points in corrected fisheye images were used but the proposed algorithm corrected only the feature point of the obstacle. We obtained faster processing than previous systems through this process. The core of the proposed algorithm may be summarized as follows: First, we capture instantaneous $360^{\circ}$ panoramic images around a robot through fish-eye lenses which are mounted in the bottom direction. Second, we remove the feature points of the floor surface using a histogram filter, and label the candidates of the obstacle extracted. Third, we estimate the location of obstacles based on motion vectors using LKOF. Finally, it estimates the robot position using an Extended Kalman Filter based on the obstacle position obtained by LKOF and creates a map. We will confirm the reliability of the mapping algorithm using motion estimation based on fisheye images through the comparison between maps obtained using the proposed algorithm and real maps.

레이저 슬릿빔과 CCD 카메라를 이용한 3차원 영상인식 (3D image processing using laser slit beam and CCD camera)

  • 김동기;윤광의;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.40-43
    • /
    • 1997
  • This paper presents a 3D object recognition method for generation of 3D environmental map or obstacle recognition of mobile robots. An active light source projects a stripe pattern of light onto the object surface, while the camera observes the projected pattern from its offset point. The system consists of a laser unit and a camera on a pan/tilt device. The line segment in 2D camera image implies an object surface plane. The scaling, filtering, edge extraction, object extraction and line thinning are used for the enhancement of the light stripe image. We can get faithful depth informations of the object surface from the line segment interpretation. The performance of the proposed method has demonstrated in detail through the experiments for varies type objects. Experimental results show that the method has a good position accuracy, effectively eliminates optical noises in the image, greatly reduces memory requirement, and also greatly cut down the image processing time for the 3D object recognition compared to the conventional object recognition.

  • PDF