• Title/Summary/Keyword: Obstacle Crossing

Search Result 41, Processing Time 0.027 seconds

Obstacle Crossing Training for Improving Balance and Walking Functions After Stroke: Randomized Controlled Trial of Unaffected Limb Leads Versus Affected Limb Leads

  • Gi-Seon Ryu;Joon-Hee Lee;Duck-Won Oh
    • PNF and Movement
    • /
    • v.21 no.1
    • /
    • pp.119-128
    • /
    • 2023
  • Purpose: Obstacle crossing training is being used to improve the walking ability of stroke patients, but studies on which method is more effective when performing obstacle crossing training with an unaffected limb lead (OCT-ULL) and an affected limb lead (OCT-ALL) are not well known. As such, this study aims to compare the intervention effects of obstacle crossing training using unaffected limb leads (OCT-ULL) and obstacle crossing training using affected limb leads (OCT-ALL). Methods: In total, 25 patients with chronic stroke were studied and assigned randomly to the obstacle crossing training with unaffected limb leads (OCT-ULL) group or the obstacle crossing training with affected limb leads (OCT-ALL) group. A lower extremity strength test, balance and gait test, and fall efficacy test were conducted as preliminary tests, and all patients participated in the intervention for 30 minutes a day, five days a week for four weeks, and the same preliminary tests were conducted post-intervention. Results: Compared with the OCT-ALL group, the OCT-ULL group showed a significant improvement in the strength of the affected hip abductor muscle and in balance and gait, as well as in fall efficacy (p<.05). Conclusion: This study suggested that applying the OCT-ULL training method in the obstacle crossing training of stroke patients is more effective for improving balance and gait functions than OCT-ALL.

Effects of Task-Specific Obstacle Crossing Training on Functional Gait Capability in Patients with Cerebellar Ataxia: Feasibility Study

  • Park, Jin-Hoon
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.2
    • /
    • pp.112-117
    • /
    • 2015
  • Purpose: The purpose of this study was to examine the effects of a task-specific obstacle crossing rehabilitation program on functional gait ability in patients with cerebellar ataxia. Overall, we sought to provide ataxia-specific locomotor rehabilitation guidelines for use in clinical practice based on quantitative evidence using relevant analysis of gait kinematics including valid clinical tests. Methods: Patients with cerebellar disease (n=13) participated in obstacle crossing training focusing on maintenance of dynamic balance and posture, stable transferring of body weight, and production of coordinated limb movements for 8 weeks, 2 times per week, 90 minutes per session. Throughout the training of body weight transfer, the instructions emphasized conscious perception and control of the center of body stability, trunk and limb alignment, and stepping kinematics during the practice of each walking phase. Results: According to the results, compared with pre-training data, foot clearance, pre-&post-obstacle distance, delay time, and total obstacle crossing time were increased after intervention. In addition, body COM measures indicated that body sway and movement variability, therefore posture stability during obstacle crossing, showed improvement after training. Based on these results, body sway was reduced and stepping pattern became more consistent during obstacle crossing gait after participation in patients with cerebellar ataxia. Conclusion: Findings of this study suggest that task-relevant obstacle crossing training may have a beneficial effect on recovery of functional gait ability in patients with cerebellar disease.

Algorithm Development of Level Crossing Obstacle Detection using Laser Radar Sensor (레이저레이더 센서를 이용한 철도 건널목 지장물 검지 알고리즘 개발)

  • Kim, Young-June;Baek, Jong-Hyen;Choi, Kyu-Hyung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1813-1819
    • /
    • 2013
  • Existing level crossing obstacle detecting system was installed using a laser beam. Level crossing obstacle detecting system using a laser beam that has been a problem in relation to safety and maintainability failure according to weather conditions. We proposed laser radar level crossing obstacle detecting system as a way to overcome problem, and we developed an algorithm for this. Level crossing obstacle detecting system using a laser radar sensor algorithm is robust to external environment and a shadow zone does not exist. Sensor part of the laser radar level crossing obstacle detecting system of these is made up by the image processing unit and laser radar sensor, it operations by receiving train entering information from the control unit. In this paper, we proposed a detecting algorithm with calculation of the size of the laser radar sensor. Based on this, we were performance test on the basis of the scenario by making a prototype. In the future, laser radar level crossing obstacle detecting system to ensure the safety and reliability through the field test.

Correlation Between Executive Function and Walk While Crossing Over an Obstacle Under Different Gait Phases

  • Seung Min Lee;Han Suk Lee
    • Dementia and Neurocognitive Disorders
    • /
    • v.22 no.4
    • /
    • pp.139-147
    • /
    • 2023
  • Background and Purpose: Dual walking task such as crossing over an obstacle may serve as an excellent tool for predicting early cognitive decline. Thus, this study aimed to investigate correlation between walking while crossing over an obstacle and executive functions under different gait phases to validate the use of walking with an obstacle for predicting early cognitive decline. Methods: A cross-sectional study was conducted on 48 elderly individuals from 2 day-care centers and 3 welfare-centers in Seoul and Gyeonggi, Korea. Executive function tests (Trail Making Test, Stroop test) and dual walking tests (gait speed, cadence, stance time, gait cycle time) were performed and compared using partial correlation analysis. Results: There were significant correlations between executive function and most of the gait variables (stance time, cadence, and gait cycle time) (p<0.05) when crossing over an obstacle while walking. Especially, stance time exhibited significant correlations with most executive functions (p<0.05). Conclusions: When evaluating executive function during walking with an obstacle, post-obstacle-crossing phase and stance time need to be observed.

Time Difference of the COP Displacement according Obstacle Height during Obstacle Crossing in Older Adults (노인의 장애물 보행 시 장애물 높이에 의한 압력중심 이동시간의 차이)

  • Park, Seol;Kim, Kyoung;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • Purpose: This study examined the difference in the center of pressure (COP) displacement time in older adults according to the obstacle height during stance at each sub.phase when crossing obstacles. Methods: Fifteen older adults were enrolled in this study (${\geq}65$ years of age). The F-scan was used to measure the COP displacement time when crossing a 0, 10 and 40cm obstacle, and the stance phase was divided into 4 sub-phases according to the foot contact pattern. Results: During the stance phase, the COP displacement time increased with increasing obstacle height. During the mid-stance, terminal stance and pre-swing except for the loading response, there were significant differences in the COP displacement time according to the obstacle height. Conclusion: This study suggests that older adults show differences in the COP displacement time according to the stance sub-phase while crossing obstacles, and they use different mechanisms according the sub-phases to maintain balance during obstacle crossing.

A consideration on obstacle detector at level crossing using by ultrasonic sensor (초음파 센서를 이용한 건널목 지장물 검지장치에 관한 고찰)

  • Cho, B.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.286-288
    • /
    • 2003
  • Accidents at level crossing where railways and roads cross cause many casualties because of collision of cars etc and it also has a risk of the 2nd accident of trains. it is the most vulnerable point in the railway safety. Fundamental solution for accidents at level crossing is making the crossings cubic. but it can't be easily progressed because of environmental and financial difficulties. every kind of anti-accident measures are being strived for. one of the strived results is level crossing obstacle detector which automatically detects obstacles like defected cars etc in the middle of level crossing and transmits the information of obstacles to the approaching train. However present level crossing obstacle auto detector needs high expenses to be installed and has difficulties that lenses of beam transmitter, beam receiver should be cleaned in snowing winter. this document reviews level crossing obstacle auto detector using ultrasonic sensor to measure these difficulties.

  • PDF

Improvement of Obstruction Detecting Method at Railroad Crossing by Image Analyze (영상해석을 통한 철도건널목 장애물 검지방법 개선)

  • Song, Hyeon-Sam;Kim, Young-Dal;Lee, Dae-Dong;Shim, Jae-Myung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1444-1450
    • /
    • 2011
  • An analysis of the causes of railroad crossing accidents reveals that most train collision accidents that occur when safety crossing devices are functioning normally occur because vehicles either experience engine failure on the tracks or because drivers were not notified of the coming train, in which case they get trapped on the tracks when the crossing barriers descend. To prevent such an accident, obstacle detection device by using laser beams detecting the presence of obstacle and crossing bar direction controller by moving direction detection sensor using the Earth's magnetic field detection technology are used in the railroad crossing. Despite using the obstacles detector and crossing bar direction controller in the railroad crossing, the equipments for the railroad crossing does not prevent accidents completely. Therefore, this research has studied new method that can detect obstacles through image analyze and alternate existing equipments. There will be excellent effect to be preventing railroad crossing accident by developing a reliable and new obstacle detecting device.

Effects of Treadmill Gait Training with Obstacle-Crossing on Static and Dynamic Balance Ability in Patients with Post Stroke Hemiplegia (장애물 넘기 트레드밀 보행 훈련이 편마비 환자의 정적 및 동적 균형 능력에 미치는 영향)

  • Lee, Ji-Eun;Lee, Ho-Seong
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.14 no.1
    • /
    • pp.139-150
    • /
    • 2019
  • PURPOSE: This study was conducted to determine the effects of treadmill gait training with obstacle-crossing on the static and dynamic balance ability of patients with post stroke hemiplegia. METHODS: Twenty-one patients with post stroke hemiplegia were divided into three groups as: treadmill gait training with obstacle-crossing (TOG, n=7), treadmill gait training without obstacle-crossing (TGG, n=7) and a control (CON, n=7). TOG and TGG performed exercise for 20 minutes, three times a week for 8 weeks. Static balance ability (stability typical, ST; weight distribution index, WDI; fourier harmony index, FHI; and fall index, FI) and dynamic balance ability (berg balance scale, BBS and timed up and go test, TUG) were measured before and after 8 -weeks in each exercise group. Statistical analyses were conducted using two-way ANOVA with repeated measures, a paired t-test, and multiple comparisons according to Tukey's HSD. RESULTS: FHI and BBS were significantly increased at TOG (p<.01) and TGG (p<.05) after 8-weeks compared to before treadmill gait training with obstacle-crossing. FHI and BBS were significantly increased at TOG compared with CON and TGG (p<.05). CONCLUSION: Treadmill gait training with obstacle-crossing was more effective than that without obstacle-crossing to improve posture control and independent daily life performance of hemiplegia patients.

A Study on Intelligent Railway Level Crossing System for Accident Prevention

  • Cho, Bong-Kwan;Jung, Jae-Il
    • International Journal of Railway
    • /
    • v.3 no.3
    • /
    • pp.106-112
    • /
    • 2010
  • Accidents at level crossing have large portion on train accidents, and causes economical loss by train delay and operational interruption. Various safety equipments are employed to reduce the accident at level crossing, but existing warning device, and crossing barrier are simple train-oriented protection equipments. In this paper, intelligent railway level crossing system is proposed to prevent and reduce accidents. For train driver's prompt action, image of level crossing and obstacle warning message are continuously provided to train driver through wireless communication in level crossing control zone. Obstacle warning messages, which are extracted by computer vision processing of captured image at level crossing, are recognized by train driver through message color, flickering and warning sound. It helps train driver to decide how to take an action. Meanwhile, for vehicle driver's attention, location and speed of approaching train are given to roadside equipments. We identified the effect of proposed system through test installation at Sea train and Airport level crossing of Yeong-dong line.

  • PDF

Effects of induced stereoacuity reduction on obstacle crossing (입체시력 감소가 장애물 보행에 미치는 영향)

  • Woo, Byung-Hoon;Sul, Jeong-Dug
    • 한국체육학회지인문사회과학편
    • /
    • v.54 no.5
    • /
    • pp.829-840
    • /
    • 2015
  • The purpose of this study was to investigated into the kinematics and ground reaction force for gait on induced stereoacuity in normal subjects with normal sight. Eighteen subjects who passed the stereoacuity testing were participated in the experiment(age: 22.1±2.7 years, height: 176.8±4.4 cm, weight: 67.6±5.8 kg). The study method adopted 3D analysis with six cameras and ground reaction force with two force-plates. The results were as follows; In gait velocity, obstacle crossing gait was slower than flat gait. In angular displacement of hip joint, mostly obstacle crossing gait was more flexed than flat gait. In angular displacement of knee joint, obstacle crossing gait was more flexed than flat gait, and stereoacuity reduction gait in TO and FC2 were more flexed than normal vision gait. In angular displacement of ankle joint, obstacle crossing gait in FC2 was more flexed than flat gait. In trunk tilt, obstacle crossing gait in MSt, TO and MSw were more extended than flat gait. In GRF, there was no significant in Fx, obstacle crossing gait in right and left foot were bigger propulsion force than flat gait, obstacle crossing gait in right and left foot were bigger braking force than normal vision gait in Fy, and obstacle crossing gait in right and left foot were bigger than flat gait in peak F1 and peak F2 of Fz, and stereoacuity reduction gait in right foot was lower than normal vision gait in valley force of Fz.