• Title/Summary/Keyword: Observational design and construction method

Search Result 17, Processing Time 0.023 seconds

A Review of the Last Century Construction Failures and the Observational Method in Geotechnical Engineering (지반과 관련된 지난 세기의 건설사고와 정보화 시공)

  • 김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03c
    • /
    • pp.1-36
    • /
    • 2000
  • Construction incidents, mechanisms and causes in Geotechnical Engineering have been closely reviewed for the safety assurance during design and construction stages. The safety assurance is clearly related to the observational method in which design is reviewed during construction and contingency actions are undertaken successfully to minimise any potential failures. The observational method has been extensively applied for the construction of subways underground structures, dams and many important Civil Engineering projects in the past 20 years. But the number of serious construction incidents are growing for the past several decades. Therefore present development of observational method and improvement techniques are introduced with some case histories.

  • PDF

New Observational Design and Construction Method for Rock Block Evaluation of Tunnels in Discontinuous Rock Masses (불연속성 암반에서의 터널의 암반블럭 평가를 위한 신 정보화설계시공법)

  • Hwang Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.1-10
    • /
    • 2006
  • Rock masses in nature include various rock discontinuities such as faults, joints, bedding planes, fractures, cracks, schistosities, and cleavages. The behavior of rock structures, therefore, is mainly controlled by various rock discontinuities. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which cannot be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the rock excavation. The observational design and construction method of tunnels in rock masses is becoming important recently. In this paper, a new observational design and construction method for rock block evaluation of tunnels in discontinuous rock masses is proposed, and then applied to the tunnel based on actual rock discontinuity information observed in the field. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed far the new observational design and construction method. This computer simulation method with user-friendly interfaces can calculate not only the stability of rock blocks but also the design of supplementary supports. The effectiveness of the proposed observational design and construction method has been verified by the confirmation of key block during the enlargement excavation.

Key block analysis method for observational design and construction method in tunnels (터널의 정보화 설계시공을 위한 키블럭 해석기법)

  • Hwang, Jae-Yun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.3
    • /
    • pp.275-283
    • /
    • 2010
  • Recently, the observational design and construction method in tunnels has been becoming important. Rock masses include various discontinuities such as joints, faults, fractures, bedding planes, and, cracks. The behavior of tunnels in hard rocks, therefore, is generally controlled by various discontinuities. In this study, a new key block analysis method for observational design and construction method in tunnels is proposed, and then applied to the actual tunnel with a super-large cross-section. The proposed analysis method considers finite persistence of discontinuities. The new analysis method can handle concave and convex shaped blocks. To demonstrate the applicability of this key block analysis method for observational design and construction method in tunnels, the analysis results are examined and compared with those of the conventional method.

The Role of Feed Back Analysis in Observational Method (정보화 시공에서 Feed Back Analysis (터널, 암반사면, 지반굴착 등 Hard Material 사례중심으로))

  • 김학문
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.147-179
    • /
    • 2002
  • The important role of observational method in geotechnical engineering are emphasized together with the direction of future development, concerning successful application of the technique on the site investigation, design and feed back at various construction stages. Case histories on the application of feed back are introduced in order to achieve the most economical and reliable construction for tunnel, rock slope and deep excavations through feed back system at design and construction stages. Also the limitations and advantages of the observational method and the role of feed back system are discussed for construction of tunnel, rock slope and deep excavation in hard ground such as layered ground conditions including weathered, soft and hard rocks.

  • PDF

New Observational Design and Construction Method in Tunnels and Its Application to Very Large Cross Section Tunnel (터널의 신 정보화 설계시공법과 극대단면 터널에의 적용)

  • Hwang Jae-Yun
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.5-14
    • /
    • 2004
  • The observational design and construction method in tunnels is becoming important recently. In many tunnels, enormous cost and time are consumed to cope with the failing or sliding of rock blocks, which could not be predicted because of the complexity of rock discontinuities. It is difficult to estimate the properties of rock masses before the construction. In this paper, a new observational design and construction method in tunnels are proposed, and then applied to the example of the very large cross section tunnel based on actual discontinuity information observed in situ. The items examined in developing a program for the new observational design and construction method are the following ones: generality, precision, high speed, and friendly usability. At the very large cross section tunnel, 7 key blocks were judged to be unstable because they could not be supported by standard supports. Supplementary supports were installed to these 7 key blocks before the excavation. It is possible to detect key blocks all along the tunnel exactly by using the numerical analysis program developed for the new observational design and construction method in the very large cross section tunnel. This computer simulation method with user-friendly interfaces can calculate not only the stability of key blocks but also the design of supplementary supports.

New Technologies and Development in Observational Methods and Research Needs in Geotechnical Engineering (지반공학 분야의 국외 정보화 시공기술 적용 사례 및 발전 방향)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03c
    • /
    • pp.37-54
    • /
    • 2000
  • The observational method using field measurement technique have contributed significantly to advancements in the state-of-the art of geotechnical engineering in the 20th century. Due to the rapid development in computer technology, Internet and GIS have become an integral part of civil engineering project management. This paper presents new technologies and development in observational method which have valuable implication on field measurement in geotechnical engineering. Systematic approach to planning monitoring program in geotechnical instrumentation is also presented. Finally, research needs in development and application of integrated design/construction management system in geotechnical engineering projects are discussed.

  • PDF

Development of Back Analysis Program for Total Management Using Observational Method of Earth Retaining Structures under Ground Excavation (지반굴착 흙막이공의 정보화시공 종합관리를 위한 역해석 프로그램 개발)

  • 오정환;조철현;김성재;백영식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10c
    • /
    • pp.103-122
    • /
    • 2001
  • For prediction of ground movement per the excavation step, observational results of ground movement during the construction was very different with prediction during the analysis of design. step because of the uncertainty of the numerical analysis modelling, the soil parameter, and the condition of a construction field, etc. however accuratly numerical analysis method was applied. Therefore, the management system through the construction field measurement should be achieved for grasping the situation during the excavation. Until present, the measurement system restricted by ‘Absolute Value Management system’only analyzing the stability of present step was executed. So, it was difficult situation to expect the prediction of ground movement for the next excavation step. In this situation, it was developed that ‘The Management system TOMAS-EXCAV’ consisted of ‘Absolute value management system’ analyzing the stability of present step and ‘Prediction management system’ expecting the ground movement of next excavation step and analyzing the stability of next excavation step by‘Back Analysis’. TOMAS-EXCAV could be applied to all uncertainty of earth retaining structures analysis by connecting ‘Forward analysis program’ and ‘Back analysis program’ and optimizing the main design variables using SQP-MMFD optimization method through measurement results. The application of TOMAS-EXCAV was confirmed that verifed the three earth retaing construction field by back analysis.

  • PDF

Rock Displacement Measurement System by Precise Vision Metrology (정밀 화상계측법을 이용한 암반변위 계측시스템)

  • Hwang, Jae-Yun
    • Tunnel and Underground Space
    • /
    • v.21 no.6
    • /
    • pp.450-459
    • /
    • 2011
  • For the purpose of evaluating the safety of rock structures such as underground caverns, tunnels and slopes, rock displacement measurement is carried out to identify the behavior of rock masses. Tapes, levels, and total stations are usually applied to the displacement measurement. These tools, however, are weighed down by many disadvantages. In this study, a new displacement measurement system by precise vision metrology was proposed for the observational design and construction method of rock structures, and then applied to a tunnel under construction. Comparisons and investigations of the measurement of the tunnel have confirmed the effectiveness and applicability of the developed measurement system.

Tunnelling on terrace soil deposits: Characterization and experiences on the Bogota-Villavicencio road

  • Colmenares, Julio E.;Davila, Juan M.;Shin, Jong-Ho;Vega, Jairo
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.899-910
    • /
    • 2018
  • Terrace deposits are often encountered in portal areas and tunnels with low overburden. They are challenging to excavate considering their great mechanical and spatial heterogeneity and a very high stiffness contrast within the ground. Terrace deposits are difficult to characterize, considering that samples for laboratory testing are almost unfeasible to obtain, and laboratory tests may not be representative due to scale effects. This paper presents the approach taken for their characterization during the design stage and their posterior validation performed during construction. Lessons learned from several tunnels excavated on terrace deposits on the Bogota-Villavicencio road (central-east Colombia), suggest that based on numerical simulations, laboratory testing and tunnel system behaviour monitoring, an observational approach allows engineers to optimize the excavation and support methods for the encountered ground conditions, resulting in a more economic and safe construction.