• Title/Summary/Keyword: Observation-error model

Search Result 256, Processing Time 0.025 seconds

Improving Usage of the Korea Meteorological Administration's Digital Forecasts in Agriculture: Correction Method for Daytime Hourly Air Temperature over Complex Terrain (기상청 동네예보의 영농활용도 증진을 위한 방안: 복잡지형의 낮 기온 상세화 기법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.221-228
    • /
    • 2019
  • The effects of wind speed on the temperature change during day time could be insignificant in a region with a complex terrain. The objective of this study was to derive empirical relationship between solar radiation and hourly temperature under a windy condition for the period from sunrise to sunset in order to improve hourly air temperature at a site-specific scale. The deviation of the temperature measurements was analyzed along with the changes of the hourly sunlight at weather observation sites located on the east and west slopes under given wind speed. An empirical model where wind speed use used as an independent variable was obtained to quantify the solar effects on the temperature change (MJ/㎡). This model was verified estimating the hourly temperature during the daytime (0600-1900 h) at 25 weather observation sites located in the study area that has complex topography for the period from January to December 2018. The mean error (ME) and root mean square error (RMSE)of the estimated and measured values ranged from -0.98 to 0.67 ℃, and from 0.95 to 2.04 ℃, respectively. The daytime temperature at 1500 h were estimated using new and previous models. It was found that to the model proposed in the present study reduced the measurement errors of the hourly temperature in the afternoon in comparison with the previous model. For example, the ME and RMSE of the previous model were (ME -0.91 ℃ and 1.47 ℃, respectively. In contrast, the values of ME and RMSE were -0.45 ℃ and 1.22 ℃ for the new model, respectively. Our results suggested that the reliability of hourly temperature estimates at a specific site could be improved taking into account the effect of wind as well as solar radiation.

A Study of Contingency Screening Method Considering Voltage Security (전압안전도를 고려한 상정사고 스크린닝에 관한 연구)

  • 송길영;김영한;최상규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.2
    • /
    • pp.133-141
    • /
    • 1990
  • In the operation of an electric power system, the voltage security of the system has acquired more significant importance after the occurrence of large system black-outs caused by voltage collapse several times. This paper describes a fast contingency screening method concerning voltage security. The method defines a voltage-sensitive buses where significant voltage changes would occur as a result of the contingency to reduce the number of bus voltages to be solved for continngency screening. This method is based on the observation that it is not necessary to solve the entire network in most contingency cases because boltage changes actually occur around the contingency. The P-Q decoupled linearized model and the fast error correction method are also adopted in the method to define voltage-sensitive buses and to calculate voltage magnitude on the selected voltage-sensitive buses fastly and reliably. The method suggested in this papaer has been tested in IEEE 30-bus model system and KEPCO 130-bus actual system and its effectiveness for practical use has also been confirmed.

  • PDF

Regression Analysis of Longitudinal Data Based on M-estimates

  • Jung, Sin-Ho;Terry M. Therneau
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.201-217
    • /
    • 2000
  • The method of generalized estimating equations (GEE) has become very popular for the analysis of longitudinal data. We extend this work to the use of M-estimators; the resultant regression estimates are robust to heavy tailed errors and to outliers. The proposed method does not require correct specification of the dependence structure between observation, and allows for heterogeneity of the error. However, an estimate of the dependence structure may be incorporated, and if it is correct this guarantees a higher efficiency for the regression estimators. A goodness-of-fit test for checking the adequacy of the assumed M-estimation regression model is also provided. Simulation studies are conducted to show the finite-sample performance of the new methods. The proposed methods are applied to a real-life data set.

  • PDF

Estimation of the Survival Function under Extreme Right Censoring Model (극단적인 오른쪽 관측중단모형에서 생존함수의 추정)

  • Lee, Jae-Man
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.225-233
    • /
    • 2000
  • In life-testing experiments, in which the longest time an experimental unit is on test is not a failure time, but rather a censored observation. For the situation the Kaplan-Meier estimator is known to be a baised estimator of the survival function. Several modifications of the Kaplan-Meier estimator are examined and compared with bias and mean squared error.

  • PDF

Very Short-term Electric Load Forecasting for Real-time Power System Operation

  • Jung, Hyun-Woo;Song, Kyung-Bin;Park, Jeong-Do;Park, Rae-Jun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1419-1424
    • /
    • 2018
  • Very short-term electric load forecasting is essential for real-time power system operation. In this paper, a very short-term electric load forecasting technique applying the Kalman filter algorithm is proposed. In order to apply the Kalman filter algorithm to electric load forecasting, an electrical load forecasting algorithm is defined as an observation model and a state space model in a time domain. In addition, in order to precisely reflect the noise characteristics of the Kalman filter algorithm, the optimal error covariance matrixes Q and R are selected from several experiments. The proposed algorithm is expected to contribute to stable real-time power system operation by providing a precise electric load forecasting result in the next six hours.

Comparative studies of different machine learning algorithms in predicting the compressive strength of geopolymer concrete

  • Sagar Paruthi;Ibadur Rahman;Asif Husain
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.607-613
    • /
    • 2023
  • The objective of this work is to determine the compressive strength of geopolymer concrete utilizing four distinct machine learning approaches. These techniques are known as gradient boosting machine (GBM), generalized linear model (GLM), extremely randomized trees (XRT), and deep learning (DL). Experimentation is performed to collect the data that is then utilized for training the models. Compressive strength is the response variable, whereas curing days, curing temperature, silica fume, and nanosilica concentration are the different input parameters that are taken into consideration. Several kinds of errors, including root mean square error (RMSE), coefficient of correlation (CC), variance account for (VAF), RMSE to observation's standard deviation ratio (RSR), and Nash-Sutcliffe effectiveness (NSE), were computed to determine the effectiveness of each algorithm. It was observed that, among all the models that were investigated, the GBM is the surrogate model that can predict the compressive strength of the geopolymer concrete with the highest degree of precision.

Forecast and verification of perceived temperature using a mesoscale model over the Korean Peninsula during 2007 summer (중규모 수치 모델 자료를 이용한 2007년 여름철 한반도 인지온도 예보와 검증)

  • Byon, Jae-Young;Kim, Jiyoung;Choi, Byoung-Cheol;Choi, Young-Jean
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.237-248
    • /
    • 2008
  • A thermal index which considers metabolic heat generation of human body is proposed for operational forecasting. The new thermal index, Perceived Temperature (PT), is forecasted using Weather Research and Forecasting (WRF) mesoscale model and validated. Forecasted PT shows the characteristics of diurnal variation and topographic and latitudinal effect. Statistical skill scores such as correlation, bias, and RMSE are employed for objective verification of PT and input meteorological variables which are used for calculating PT. Verification result indicates that the accuracy of air temperature and wind forecast is higher in the initial forecast time, while relative humidity is improved as the forecast time increases. The forecasted PT during 2007 summer is lower than PT calculated by observation data. The predicted PT has a minimum Root-Mean-Square-Error (RMSE) of $7-8^{\circ}C$ at 9-18 hour forecast. Spatial distribution of PT shows that it is overestimated in western region, while PT in middle-eastern region is underestimated due to strong wind and low temperature forecast. Underestimation of wind speed and overestimation of relative humidity have caused higher PT than observation in southern region. The predicted PT from the mesoscale model gives appropriate information as a thermal index forecast. This study suggests that forecasted PT is applicable to the prediction of health warning based on the relationship between PT and mortality.

The Study on the Optimal Angle of the Solar Panel using by Solar Radiation Model (태양복사모델을 이용한 태양전지판의 최적 경사각에 대한 연구)

  • Jee, Joon-Bum;Choi, Young-Jean;Lee, Kyu-Tae
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.2
    • /
    • pp.64-73
    • /
    • 2012
  • The angle of solar panels is calculated using solar radiation model for the efficient solar power generation. In ideal state, the time of maximum solar radiation is represented from 12:08 to 12:40 during a year at Gangneung and it save rage time is12:23. The maximum solar radiation is 1012$W/m^2$ and 708$W/m^2$ inc lear sky and cloudy sky, respectively. Solar radiation is more sensitive to North-South (N-S) slope angle than East-West (E-W) azimuth angle. Daily solar radiation on optimum angle of solar panel is higher than that on horizontal surface except for 90 days during summer. In order to apply to the real atmosphere, the TMY (typical meteorological Year) data which obtained from the 22 solar sites operated by KMA(Korea Meteorological Administration) during 11 years(2000 to 2010) is used as the input data of solar radiation model. The distribution of calculated solar radiation is similar to the observation, except in Andong, where it is overestimated, and in Mokpo and Heuksando, where it is underestimated. Statistical analysis is performed on calculated and observed monthly solar radiation on horizontal surface, and the calculation is overestimated from the observation. Correlationis 0.95 and RMSE (Root Mean Square Error) is10.81 MJ. The result shows that optimum N-S slope angles of solar panel are about $2^{\circ}$ lower than station latitude, but E-W slope angles are lower than ${\pm}1^{\circ}$. There are three types of solar panels: horizontal, fixed with optimum slope angle, and panels with tracker system. The energy efficiencies are on average 20% higher on fixed solar panel and 60% higher on tracker solar panel than compared to the horizontal solar panel, respectively.

An Uncertainty Assessment of AOGCM and Future Projection over East Asia (동아시아 지역의 AOGCM 불확실성 평가 및 미래기후전망)

  • Kim, Min-Ji;Shin, Jin-Ho;Lee, Hyo-Shin;Kwon, Won-Tae
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.507-524
    • /
    • 2008
  • In this paper, future climate changes over East Asia($20^{\circ}{\sim}50^{\circ}N$, $100^{\circ}{\sim}150^{\circ}E$) are projected by anthropogenic forcing of greenhouse gases and aerosols using coupled atmosphere-ocean general circulation model (AOGCM) simulations based on Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) B1, A1B and A2 scenarios. Before projection future climate, model performance is assessed by the $20^{th}$ Century (20C3M) experiment with bias, root Mean Square Error (RMSE), ratio of standard deviation, Taylor diagram analysis. The result of examination of the seasonal uncertainty of T2m and PCP shows that cold bias, lowered than that of observation, of T2m and wet bias, larger than that of observation, of PCP are found over East Asia. The largest wet bias is found in winter and the largest cold bias is found in summer. The RMSE of temperature in the annual mean increases and this trend happens in winter, too. That is, higher resolution model shows generally better performances in simulation T2m and PCP. Based on IPCC SRES scenarios, East Asia will experience warmer and wetter climate in the coming $21^{st}$ century. It is predict the T2m increase in East Asia is larger than global mean temperature. As the latitude goes high, the warming over the continents of East Asia showed much more increase than that over the ocean. An enhanced land-sea contrast is proposed as a possible mechanism of the intensified Asian summer monsoon. But, the inter-model variability in PCP changes is large.

A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization (지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.51-64
    • /
    • 2015
  • In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.