• Title/Summary/Keyword: Oblique Waves

Search Result 106, Processing Time 0.036 seconds

Mechanisms of Oblique Shock-Induced Combustion Instability

  • Choi, Jeong-Yeol;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.7 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • Instability of oblique detonation waves (ODW) at off-attaching condition was investigated through a series of numerical simulations. Two-dimensional wedge of finite length was considered in $H_2/O_2/N_2$ mixtures at superdetonative condition. Numerical simulation was carried out with a compressible fluid dynamics code and a detailed hydrogen-oxygen combustion mechanism. Present result reveals that there is a chemical kinetic limit of the ODW detachment, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. Result also presents that ODW still attaches at a wedge as an oblique shock-induced flame showing periodically unstable motion, if the Rankine-Hugoniot limit of detachment is satisfied but the chemical kinetic limit is not. Mechanism of the periodic instability is considered as interactions of shock and reaction waves coupled with chemical kinetic effects. From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of the Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

Correlation between reverberation time and standing wave (잔향시간과 정재파의 상호관계)

  • 차일환
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.10 no.5
    • /
    • pp.31-38
    • /
    • 1973
  • The Sabine's formula has been widlely used for calculating reverberation time and applied for actual systems. The result of Sabine's method is only same as the reverberation time of one axial wave according to the wave theory. Reverberation time is mainly dependent on the standing waves. In case of the rectangular room the frequencies of three mode covering 250Hz and several intensities at various positions of the room were measures by a spectrograph. It wart found that axial wavers and tangential waves decayed more slowly than oblique waves. The experimental results showed that the amount of axial and tangential wave in a frequency band varies depending on the position in the room. It is concluded that the results give to control reverberation times in a room.

  • PDF

Comparison of Abdominal Muscles Thickness During Both-Foot Support and One-Foot Support Motion in Bridge Exercises Using the Stable Surface and Sling (안정 지지면과 슬링을 이용한 교각 자세에서 양발지지와 한발지지 동작 시 복부 근육 두께 비교)

  • Ko, Har-am;Park, Seo-hyeon;Park, Jong-won;Yang, Seon-yu;Kim, Jin-young
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.28 no.2
    • /
    • pp.7-14
    • /
    • 2022
  • Purposed: This study was conducted to find out by ultrasonic waves the thickness change of the deep abdominal muscles, such as transverse abdominal, internal oblique and external oblique when performing general bridge exercise on the stable surface (GBE), single-legged bridge exercise on the stable surface (BES), bridge exercise with a sling (SBE) and single-legged bridge exercise with a sling (SBS). Methods: The subject, 33 healthy adults(18 men and 15 women) in their 20s of V university in J city were subjected to take four postures of GBE, BES, SBE, and SBS. When performing each posture, the thickness of transverse abdominal, internal oblique and external oblique were measured by ultrasonic waves and analyzed by repeated measures of ANOVA. This significance level was set to be p<.05. Results: Muscle thickness was increased in the order of BES, SBE, and GBE in the external oblique, resulting in statistically significant differences(p<.001). The internal oblique was significantly thicker in SBE and SBS rather than in GBE, and was thicker in SBE and SBS rather than in BES (p<.01). The thickness of the transverse abdominal was significantly increased in SBS than in GBE (p<.01). Conclusion: As the result, it may be more effective for the trunk stabilization exercises to activate the internal oblique and transverse abdominal by applying both-legged or single-legged bridge exercise in slings.

Quasi-steady State Simulation of Rotating Detonation Engine

  • Niyasdeen, Mohammed;Oh, Sejong;Kim, Kui Soon;Choi, Jeong-Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.548-559
    • /
    • 2015
  • We performed a numerical simulation based on the two-dimensional (2-D) unsteady Euler's equation with a single-step Arrhenius reaction model in order to investigate the detonation wave front propagation of an Argon (Ar) diluted oxy-hydrogen mixture ($2H_2+O_2+12Ar$). This simulation operates in the detonation frame of reference. We examine the effect of grid size and the performance impact of integrated quantities such as mass flow. For a given set of baseline conditions, the minimal and maximum grid resolutions required to simulate the respective detonation waves and the detonation cell structures are determined. Tertiary shock wave behavior for various grids and pre-exponential factors are analyzed. We found that particle fluctuation can be weakened by controlling the mass flow going through the oblique shock waves.

Wave Diffractions by Submerged Flat Plate in oblique Waves (경사파중 수중평판에 의한 파랑변형)

  • Cho, I.H.;Kim, H.J.
    • Journal of Korean Port Research
    • /
    • v.10 no.1
    • /
    • pp.53-61
    • /
    • 1996
  • This paper describes the effect of wave control using submerged flat plate by the numerical calculation and the hydraulic model test. The boundary element method is used to develop a numerical solution for the flow field caused by monochromatic oblique waves incident upon an infinitely long, sumerged flat plate situated in arbitrary water depth. The effect of wave blocking is examined according to the change of length, submerged depth of flat plate and incident angles. Numerical results show that longer length, shallower submergence of flat plate and larger incident angles enhance the effect of wave blocking. To validate numerical analysis method, hydraulic model test was conducted in 2-D wave flume with 60 cm metal sheet. Reflected waves are extracted from water surface elevation in front of the location of a submerged plate by least square method with 3 wave gages. From comparing experimental results with numerical results, efficiency of numerical analysis method by this study could be confirmed well within wide ranges of wave frequencies.

  • PDF

The submerged flexible membrane breakwaters in oblique seas

  • S.T.Kee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2001.05b
    • /
    • pp.1133-1138
    • /
    • 2001
  • The focus of this paper is on the numerical investigation of obliquely incident wane interactions with a system composed of full submerged and floating dual buoy/vertical-flexible-membrane breakwaters placed in parallel with spacing. The fully submerged systems allow surface and bottom clearances to enable wave transmission over and under the system. The problem is formulated based on the two-dimensional multi-domain hydro-elastic linear wave-body interaction theory. The hydrodynamic interaction of oblique incident waves with the combination of the rigid and flexible bodies was solved by the distribution of the simple sources (modified Bessel function of fille second kind) tat satisfy the Helmholz governing equation. Using this computer program, the performance of various dual systems varying buoy radiuses and drafts, membrane lengths, clearances. spacing, mooring-lines stiffness, mooring types, water depth, and wave characteristics is thoroughly examined. It is found that the fully submerged and floating dual buoy/membrane breakwaters call, if it is properly tuned to the coming waves, have good performances ill reflecting the obliquely incident waves over a tilde range of wave frequency and headings.

  • PDF

Reflection and Transmission Characteristics of Oblique-Incidence Ultrasonic Waves at Solid-Solid Contact Interfaces (고체-고체 접촉계면에서 경사입사 초음파의 반사·투과 특성 분석)

  • Nam, Tae-Hyung;Kim, Chung-Seok;Lee, Tae-Hun;Jhang, Kyung-Young;Kim, Noh-Yu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.9
    • /
    • pp.1113-1118
    • /
    • 2011
  • In order to evaluate the characteristics of solid-solid contact interfaces, reflection or transmission techniques involving normal-incidence longitudinal waves are generally used. However, these normal-incidence techniques are of limited use in field applications such as in the inspection of welded parts. The oblique-incidence ultrasonic technique may be an alternative for overcoming these problems. However, in this technique, the mode conversion at the contact interfaces should be taken into account along with the normal and tangential interface stiffness. In this study, we have suggested a theoretical model for obliqueincidence ultrasonic waves at the contact interfaces and analyzed their reflection and transmission characteristics. Experimental results showed that the measured reflection coefficient and second harmonic wave agreed well with the suggested theoretical model. Consequently, the oblique-incidence technique can be a promising method for evaluating the characteristics of the contact interfaces.

Analysis of Unstable Shock-Induced Combustion over Wedges and Conical Bodies (쐐기 및 원추 주위의 불안정한 충격파 유도연소 해석)

  • Jeong-Yeol Choi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.32-33
    • /
    • 2003
  • Mechanism of a periodic oscillation of shock-induced combustion over a two- dimensional wedges and axi-symmetric cones were investigated through a series of numerical simulations at off-attaching condition of oblique detonation waves(ODW). A same computational domain over 40 degree half-angle was considered for two-dimensional and axi-symmetric shock-induced combustion phenomena. For two-dimensional shock-induced combustion, a 2H2+02+17N2 mixture was considered at Mach number was 5.85with initial temperature 292 K and initial pressureof 12 KPa. The Rankine-Hugoniot relation has solution of attached waves at this condition. For axi-symmetric shock-induced combustion, a H2+2O2+2Ar mixture was considered at Mach number was 5.0 with initial temperature 288 K and initial pressure of 200 mmHg. The flow conditions were based on the conditions of similar experiments and numerical studies.[1, 3]Numerical simulation was carried out with a compressible fluid dynamics code with a detailed hydrogen-oxygen combustion mechanism.[4, 5] A series of calculations were carried out by changing the fluid dynamic time scale. The length wedge is varied as a simplest way of changing the fluid dynamic time scale. Result reveals that there is a chemical kinetic limit of the detached overdriven detonation wave, in addition to the theoretical limit predicted by Rankine-Hugoniot theory with equilibrium chemistry. At the off-attaching condition of ODW the shock and reaction waves still attach at a wedge as a periodically oscillating oblique shock-induced combustion, if the Rankine-Hugoniot limit of detachment isbut the chemical kinetic limit is not.Mechanism of the periodic oscillation is considered as interactions between shock and reaction waves coupled with chemical kinetic effects. There were various regimes of the periodicmotion depending on the fluid dynamic time scales. The difference between the two-dimensional and axi-symmetric simulations were distinct because the flow path is parallel and uniform behind the oblique shock waves, but is not behind the conical shock waves. The shock-induced combustion behind the conical shockwaves showed much more violent and irregular characteristics.From the investigation of characteristic chemical time, condition of the periodic instability is identified as follows; at the detaching condition of Rankine-Hugoniot theory, (1) flow residence time is smaller than the chemical characteristic time, behind the detached shock wave with heat addition, (2) flow residence time should be greater than the chemical characteristic time, behind an oblique shock wave without heat addition.

  • PDF

An Analysis of the Hydroelastic Response of Large Floating Structures in Oblique Waves (사파중에 놓인 거대 부유체의 응답에 대한 유탄성 해석)

  • In-H. Sim;Jae-D. Yoon;Hang-S. Choi
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.83-92
    • /
    • 1999
  • In this paper, the fluid-structure interaction of large floating structures has been rigorously analyzed and the shear effect on the structural deformation has been investigated in oblique waves. A constant panel method(CPM) based on the Green function method is implemented for computing the hydrodynamic pressure, while a finite element method(FEM) is applied for the structural response based on the Mindlin plate theory with including shear deformation. In order to validate the method, we compared numerical results with experimental ones of Mega Float carried out by Yago & Endo in head waves. General behavior shows good agreement but the local displacement at the ends is slightly different. The numerical results show that the radiation pressure due to the fluid-structure interaction is locally larger than that of wave excitation and mooring devices greatly reduce the response. It is observed that the shear effects among the total deformation constitutes about 4% in the case of Mega Float in oblique waves.

  • PDF