• Title/Summary/Keyword: Objective weighting method

Search Result 157, Processing Time 0.089 seconds

Enhanced Adjustment Strategy of Masking Threshold for Speech Signals in Low Bit-Rate Audio Coding (저전송률 오디오 부호화에서 음성 신호의 성능 개선을 위한 마스킹 임계값 적응기법 향상)

  • Lee, Chang-Heon;Kang, Hong-Goo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.62-68
    • /
    • 2010
  • This paper proposes a new masking threshold adjustment strategy to improve the performance for speech signals in low bit-rate audio coding. After determining formant regions, the masking threshold is adjusted by using the energy ratio of each sub-band to the average energy of each formant. More quantization noises are added to the bands that have relatively large energy, but less distortion is allowed in spectral valley regions by allocating more bits, which reflects the concept of perceptual weighting widely used in speech coding. From the results of objective speech quality measure, we verified that the proposed method improves quality for the speech input signals compared to the conventional one.

A Design Method for Direction Selective Structural-acoustic Coupled Radiator (구조-음향 연성현상을 갖는 방사 방향을 가질 수 있는 방사체 설계방법)

  • Seo, Hee-Seon;Kim, Yang-Hann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.225-231
    • /
    • 2005
  • This paper presents a design method for the structural-acoustic coupled radiator that can emit sound in the desired direction. A coupled system that has a finite space and a semi-infinite space separated by two flexible walls and an opening is considered. An objective function is selected to maximize radiation power on a main axis and minimize a side lobe level. To get initial values, prediction of a pressure distribution on field points and radiation pattern of the structural-acoustic coupling system is shown at a coupled-resonant frequency. Three different optimization methods are adapted to design the coupled radiator. Pressure and intensity distribution of the designed radiator is presented.

Free vibrations of fluid conveying microbeams under non-ideal boundary conditions

  • Atci, Duygu;Bagdatli, Suleyman Murat
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.141-149
    • /
    • 2017
  • In this study, vibration analysis of fluid conveying microbeams under non-ideal boundary conditions (BCs) is performed. The objective of the present paper is to describe the effects of non-ideal BCs on linear vibrations of fluid conveying microbeams. Non-ideal BCs are modeled as a linear combination of ideal clamped and ideal simply supported boundary conditions by using the weighting factor (k). Non-ideal clamped and non-ideal simply supported beams are both considered to show the effects of BCs. Equations of motion of the beam under the effect of moving fluid are obtained by using Hamilton principle. Method of multiple scales which is one of the perturbation techniques is applied to the governing linear equation of motion. Approximate solutions of the linear equation are obtained and the effects of system parameters and non-ideal BCs on natural frequencies are presented. Results indicate that, natural frequencies of fluid conveying microbeam changed significantly by varying the weighting factor k. This change is more remarkable for clamped microbeams rather than simply supported ones.

Extensions of the solution region for a discrete algebraic riccati equation and its application to$H_{\infty}$ controller design (이산 대수 Rccati방정식의 해의 존재 영역 확장 및 $H_{\infty}$베어기 설계 응용)

  • 권욱현;박부견;김상우
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.461-466
    • /
    • 1989
  • This paper describes some properties of a discrete algebraic Riccati equation and its application to $H^{\infty}$ control design. The conditions, under which an input weighting matrix can be found for a negative output weighting matrix in order that a solution P for a discrete algebraic equation may exist, are suggested in case of a stable A. This result is applied to a $H^{\infty}$ controller design for the special case of nonsingular B. It is based on a state feedback control law whose objective is to reduce the effect of input disterbances below a prespecified level. This law requires the solution of a modified algebraic Riccati equation, which provides an method for the $H^{\infty}$ optimization control problem approximately.ly.

  • PDF

New filter design to replace the post and perceptual weighting filter of transcoder and performance evaluation (상호부호화기의 후처리 필터와 인지가중 필터를 대신하는 새로운 필터 설계 및 성능 평가)

  • 최진규;윤성완;강홍구;윤대희
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2232-2235
    • /
    • 2003
  • In speech communication systems where two different speech codecs are interoperated, transcoding algorithm is a good approach because of its low complexity and improved synthesized speech quality. This paper proposes an efficient method to further improve the performance of transcoding algorithms as well as to reduce the complexity. In the conventional transcoding algorithms. a post-filter and a perceptual weighting filter should be operated sequentially because both decoding and encoding processes are needed. This results in the redundancy of the processing in terms of complexity and perceptual quality. Using the fact that their filter structures are similar, we replaced the two filters with one. The proposed algorithm requires 72.8% lower complexity than the conventional transcoding algorithm when we compare only the complexity of the filtering processes. The results of both objective and subjective tests verify that the proposed algorithm has slightly better quality than the conventional one.

  • PDF

DESIGN OPTIMIZATION OF A STAGGERED DIMPLED CHANNEL TO ENHANCE TURBULENT HEAT TRANSFER (열전달성능 향상을 위한 엇갈린 딤플 유로의 최적설계)

  • Shin, D.Y.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.04a
    • /
    • pp.159-162
    • /
    • 2007
  • This study presents a numerical procedure to optimize the shape of a staggered dimpled surface to enhance the turbulent heat transfer in a rectangular channel. A optimization technique based on neural network is used with Reynolds-averaged Navier-Stakes analysis of the fluid flow and heat transfer with Shear Stress Transport turbulence model. The dimple depth-to-dimple print diameter ratio, channel height-to-dimple print diameter ratio, and dimple print diameter-to-pitch ratio are chosen as design variables. The objective function is defined as a linear combination of terms related to heat transfer and friction loss with a weighting factor. Latin Hypercube Sampling is used to determine the training points as a mean of the Design of Experiment. Optimal values of the design variables were obtained in a range of the weighting factor.

  • PDF

Optimal Design of Fuzzy-Neural Networkd Structure Using HCM and Hybrid Identification Algorithm (HCM과 하이브리드 동정 알고리즘을 이용한 퍼지-뉴럴 네트워크 구조의 최적 설계)

  • Oh, Sung-Kwun;Park, Ho-Sung;Kim, Hyun-Ki
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.7
    • /
    • pp.339-349
    • /
    • 2001
  • This paper suggests an optimal identification method for complex and nonlinear system modeling that is based on Fuzzy-Neural Networks(FNN). The proposed Hybrid Identification Algorithm is based on Yamakawa's FNN and uses the simplified inference as fuzzy inference method and Error Back Propagation Algorithm as learning rule. In this paper, the FNN modeling implements parameter identification using HCM algorithm and hybrid structure combined with two types of optimization theories for nonlinear systems. We use a HCM(Hard C-Means) clustering algorithm to find initial apexes of membership function. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are adjusted using hybrid algorithm. The proposed hybrid identification algorithm is carried out using both a genetic algorithm and the improved complex method. Also, an aggregated objective function(performance index) with weighting factor is introduced to achieve a sound balance between approximation and generalization abilities of the model. According to the selection and adjustment of a weighting factor of an aggregate objective function which depends on the number of data and a certain degree of nonlinearity(distribution of I/O data), we show that it is available and effective to design an optimal FNN model structure with mutual balance and dependency between approximation and generalization abilities. To evaluate the performance of the proposed model, we use the time series data for gas furnace, the data of sewage treatment process and traffic route choice process.

  • PDF

A method of calculating the number of fishing operation days for fishery compensation using fishing vessel trajectory data (어선 항적데이터를 활용한 어업손실보상을 위한 조업일수 산출 방법)

  • KIM, Kwang-Il;KIM, Keun-Huyng;YOO, Sang-Lok;KIM, Seok-Jong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.4
    • /
    • pp.334-341
    • /
    • 2021
  • The fishery compensation by marine spatial planning such as routeing of ships and offshore wind farms is required objective data on whether fishing vessels are engaged in a target area. There has still been no research that calculated the number of fishing operation days scientifically. This study proposes a novel method for calculating the number of fishing operation days using the fishing trajectory data when investigating fishery compensation in marine spatial planning areas. It was calculated by multiplying the average reporting interval of trajectory data, the number of collected data, the status weighting factor, and the weighting factor for fishery compensation according to the location of each fishing vessel. In particular, the number of fishing operation days for the compensation of driftnet fishery was considered the daily average number of large vessels from the port and the fishery loss hours for avoiding collisions with them. The target area for applying the proposed method is the routeing area of ships of Jeju outer port. The yearly average fishing operation days were calculated from three years of data from 2017 to 2019. As a result of the study, the yearly average fishing operation days for the compensation of each fishing village fraternity varied from 0.0 to 39.0 days. The proposed method can be used for fishery compensation as an objective indicator in various marine spatial planning areas.

Shape Design of Heat Transfer Surfaces with Angled Ribs Using Numerical Optimization Techniques (경사진 사각리브가 부착된 열전달면의 수치최적화기법을 이용한 형상설계)

  • Kim, Hong-Min;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1051-1057
    • /
    • 2004
  • A numerical optimization procedure for the shape of three-dimensional channel with angled ribs mounted on one of the walls to enhance turbulent heat transfer is presented. The response surface method is used as an optimization technique with Reynolds-averaged Wavier-Stokes analyses of flow and heat transfer. SST turbulence model is used as a turbulence closure. Computational results for local heat transfer rate show reasonable agreements with experimental data. The pitch-to-height ratio of the rib and rib height-to-channel height ratio are set to be 9.0 and 0.1, respectively, and width-to-rib height ratio and attack angle of the rib are chosen as design variables. The objective function is defined as a linear combination of heat-transfer and friction-loss related terms with weighting factor. Full-factorial experimental design method is used to determine the data points. Optimum shapes of the channel have been obtained in the range from 0.0 to 0.1 of weighting factor.

Numerical Optimization of the Shape of Mixing Vane in Nuclear Fuel Assembly (핵연료 집합체 혼합날개형상의 수치최적설계)

  • Seo Jun-Woo;Kim Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.929-936
    • /
    • 2004
  • In the present work, shape of the mixing vane in Plus7 fuel assembly has been optimized numerically using three-dimensional Reynolds-averaged Navier-Stokes analysis of flow and heat transfer. Standard $k-{\epsilon}$ model is used as a turbulence closure. The Response surface method is employed as an optimization technique. The objective function is defined as a combination of heat transfer rate and inverse of friction loss. Bend angle and base length of mixing vane are selected as design variables. Thermal-hydraulic performances for different shapes of mixing vane have been discussed, and optimum shape has been obtained as a function of weighting factor in the objective function.