• Title/Summary/Keyword: Objective quantification

Search Result 214, Processing Time 0.036 seconds

Feasibility of Free-Breathing, Non-ECG-Gated, Black-Blood Cine Magnetic Resonance Images With Multitasking in Measuring Left Ventricular Function Indices

  • Pengfei Peng;Xun Yue;Lu Tang;Xi Wu;Qiao Deng;Tao Wu;Lei Cai;Qi Liu;Jian Xu;Xiaoqi Huang;Yucheng Chen;Kaiyue Diao;Jiayu Sun
    • Korean Journal of Radiology
    • /
    • v.24 no.12
    • /
    • pp.1221-1231
    • /
    • 2023
  • Objective: To clinically validate the feasibility and accuracy of cine images acquired through the multitasking method, with no electrocardiogram gating and free-breathing, in measuring left ventricular (LV) function indices by comparing them with those acquired through the balanced steady-state free precession (bSSFP) method, with multiple breath-holds and electrocardiogram gating. Materials and Methods: Forty-three healthy volunteers (female:male, 30:13; mean age, 23.1 ± 2.3 years) and 36 patients requiring an assessment of LV function for various clinical indications (female:male, 22:14; 57.8 ± 11.3 years) were enrolled in this prospective study. Each participant underwent cardiac magnetic resonance imaging (MRI) using the multiple breath-hold bSSFP method and free-breathing multitasking method. LV function parameters were measured for both MRI methods. Image quality was assessed through subjective image quality scores (1 to 5) and calculation of the contrast-to-noise ratio (CNR) between the myocardium and blood pool. Differences between the two MRI methods were analyzed using the Bland-Altman plot, paired t-test, or Wilcoxon signed-rank test, as appropriate. Results: LV ejection fraction (LVEF) was not significantly different between the two MRI methods (P = 0.222 in healthy volunteers and P = 0.343 in patients). LV end-diastolic mass was slightly overestimated with multitasking in both healthy volunteers (multitasking vs. bSSFP, 60.5 ± 10.7 g vs. 58.0 ± 10.4 g, respectively; P < 0.001) and patients (69.4 ± 18.1 g vs. 66.8 ± 18.0 g, respectively; P = 0.003). Acceptable and comparable image quality was achieved for both MRI methods (multitasking vs. bSSFP, 4.5 ± 0.7 vs. 4.6 ± 0.6, respectively; P = 0.203). The CNR between the myocardium and blood pool showed no significant differences between the two MRI methods (18.89 ± 6.65 vs. 18.19 ± 5.83, respectively; P = 0.480). Conclusion: Multitasking-derived cine images obtained without electrocardiogram gating and breath-holding achieved similar image quality and accurate quantification of LVEF in healthy volunteers and patients.

Relationship assessment of the residual antibiotics and the amount of N component by different production stages of liquid fertilizer from livestock manure (가축분뇨 유래 액비 생산단계별 항생제 잔류 농도와 질소 성분 함량과의 상관성 평가)

  • Song-Hee Ryu;Jin-Wook Kim;Young-Kyu Hong;Sung-Chul Kim;Jun-Hyeong Lee;Eun-A Jeong;Chang-Gyu Kim;Young-Man Yoon;Oh-Kyung Kwon
    • Journal of Applied Biological Chemistry
    • /
    • v.66
    • /
    • pp.258-265
    • /
    • 2023
  • After application of veterinary antibiotics, they may be partially metabolized before they are excreted by feces or urine either as unaltered form or as metabolites. Residual antibiotics enter the adjacent agricultural environments by spraying manure-based compost and liquid fertilizer on farmlands and lead to secondary pollution. The objective of this study was to compare the residual concentrations of 6 veterinary antibiotics by different production stages of liquid fertilizer from livestock manure recycling facilities. The relationship between concentration change of the residual antibiotics and the amount of liquid fertilizer component was also assessed. Pre-treatment showed the recovery of 63.4-106.7% at ppb level and the limit of quantification of 0.009-0.037 ㎍/L.As the result of analyzing the relationship between the residual concentrations of antibiotics and the amount of N component in liquid fertilizer by different production stages, the residual concentrations of antibiotics and N tended to decrease as the stabilization period elapsed during the liquid fertilization process. Average concentrations of sulfamethazine in raw materials, middle and final products of liquid fertilizer were 40.85, 26.17, 3.54 ㎍/L, respectively. Those of chlortetracycline decreased from 2.32 to 1.25 ㎍/L. The other 4 antibiotics also showed a decreasing trend by different production stages of liquid fertilizer. The amount of liquid fertilizer component N decreased from 0.21 to 0.096% by production stages of liquid fertilizer. It is considered that the correlation between residual antibiotic concentrations and N content can be applied as basic data for setting antibiotic reduction indicators.

Quantitative MRI Assessment of Pancreatic Steatosis Using Proton Density Fat Fraction in Pediatric Obesity

  • Jisoo Kim;Salman S. Albakheet;Kyunghwa Han;Haesung Yoon;Mi-Jung Lee;Hong Koh;Seung Kim;Junghwan Suh;Seok Joo Han;Kyong Ihn;Hyun Joo Shin
    • Korean Journal of Radiology
    • /
    • v.22 no.11
    • /
    • pp.1886-1893
    • /
    • 2021
  • Objective: To assess the feasibility of quantitatively assessing pancreatic steatosis using magnetic resonance imaging (MRI) and its correlation with obesity and metabolic risk factors in pediatric patients. Materials and Methods: Pediatric patients (≤ 18 years) who underwent liver fat quantification MRI between January 2016 and June 2019 were retrospectively included and divided into the obesity and control groups. Pancreatic proton density fat fraction (P-PDFF) was measured as the average value for three circular regions of interest (ROIs) drawn in the pancreatic head, body, and tail. Age, weight, laboratory results, and mean liver MRI values including liver PDFF (L-PDFF), stiffness on MR elastography, and T2* values were assessed for their correlation with P-PDFF using linear regression analysis. The associations between P-PDFF and metabolic risk factors, including obesity, hypertension, diabetes mellitus (DM), and dyslipidemia, were assessed using logistic regression analysis. Results: A total of 172 patients (male:female = 125:47; mean ± standard deviation [SD], 13.2 ± 3.1 years) were included. The mean P-PDFF was significantly higher in the obesity group than in the control group (mean ± SD, 4.2 ± 2.5% vs. 3.4 ± 2.4%; p = 0.037). L-PDFF and liver stiffness values showed no significant correlation with P-PDFF (p = 0.235 and p = 0.567, respectively). P-PDFF was significantly associated with obesity (odds ratio 1.146, 95% confidence interval 1.006-1.307, p = 0.041), but there was no significant association with hypertension, DM, and dyslipidemia. Conclusion: MRI can be used to quantitatively measure pancreatic steatosis in children. P-PDFF is significantly associated with obesity in pediatric patients.

Myocardial Coverage and Radiation Dose in Dynamic Myocardial Perfusion Imaging Using Third-Generation Dual-Source CT

  • Masafumi Takafuji;Kakuya Kitagawa;Masaki Ishida;Yoshitaka Goto;Satoshi Nakamura;Naoki Nagasawa;Hajime Sakuma
    • Korean Journal of Radiology
    • /
    • v.21 no.1
    • /
    • pp.58-67
    • /
    • 2020
  • Objective: Third-generation dual-source computed tomography (3rd-DSCT) allows dynamic myocardial CT perfusion imaging (dynamic CTP) with a 10.5-cm z-axis coverage. Although the increased radiation exposure associated with the 50% wider scan range compared to second-generation DSCT (2nd-DSCT) may be suppressed by using a tube voltage of 70 kV, it remains unclear whether image quality and the ability to quantify myocardial blood flow (MBF) can be maintained under these conditions. This study aimed to compare the image quality, estimated MBF, and radiation dose of dynamic CTP between 2ndDSCT and 3rd-DSCT and to evaluate whether a 10.5-cm coverage is suitable for dynamic CTP. Materials and Methods: We retrospectively analyzed 107 patients who underwent dynamic CTP using 2nd-DSCT at 80 kV (n = 54) or 3rd-DSCT at 70 kV (n = 53). Image quality, estimated MBF, radiation dose, and coverage of left ventricular (LV) myocardium were compared. Results: No significant differences were observed between 3rd-DSCT and 2nd-DSCT in contrast-to-noise ratio (37.4 ± 11.4 vs. 35.5 ± 11.2, p = 0.396). Effective radiation dose was lower with 3rd-DSCT (3.97 ± 0.92 mSv with a conversion factor of 0.017 mSv/mGy∙cm) compared to 2nd-DSCT (5.49 ± 1.36 mSv, p < 0.001). Incomplete coverage was more frequent with 2nd-DSCT than with 3rd-DSCT (1.9% [1/53] vs. 56% [30/54], p < 0.001). In propensity score-matched cohorts, MBF was comparable between 3rd-DSCT and 2nd-DSCT in non-ischemic (146.2 ± 26.5 vs. 157.5 ± 34.9 mL/min/100 g, p = 0.137) as well as ischemic myocardium (92.7 ± 21.1 vs. 90.9 ± 29.7 mL/min/100 g, p = 0.876). Conclusion: The radiation increase inherent to the widened z-axis coverage in 3rd-DSCT can be balanced by using a tube voltage of 70 kV without compromising image quality or MBF quantification. In dynamic CTP, a z-axis coverage of 10.5 cm is sufficient to achieve complete coverage of the LV myocardium in most patients.

Free-Breathing Motion-Corrected Single-Shot Phase-Sensitive Inversion Recovery Late-Gadolinium-Enhancement Imaging: A Prospective Study of Image Quality in Patients with Hypertrophic Cardiomyopathy

  • Min Jae Cha;Iksung Cho;Joonhwa Hong;Sang-Wook Kim;Seung Yong Shin;Mun Young Paek;Xiaoming Bi;Sung Mok Kim
    • Korean Journal of Radiology
    • /
    • v.22 no.7
    • /
    • pp.1044-1053
    • /
    • 2021
  • Objective: Motion-corrected averaging with a single-shot technique was introduced for faster acquisition of late-gadolinium-enhancement (LGE) cardiovascular magnetic resonance (CMR) imaging while free-breathing. We aimed to evaluate the image quality (IQ) of free-breathing motion-corrected single-shot LGE (moco-ss-LGE) in patients with hypertrophic cardiomyopathy (HCM). Materials and Methods: Between April and December 2019, 30 patients (23 men; median age, 48.5; interquartile range [IQR], 36.5-61.3) with HCM were prospectively enrolled. Breath-held single-shot LGE (bh-ss-LGE) and free-breathing moco-ss-LGE images were acquired in random order on a 3T MR system. Semi-quantitative IQ scores, contrast-to-noise ratios (CNRs), and quantitative size of myocardial scar were assessed on pairs of bh-ss-LGE and moco-ss-LGE. The mean ± standard deviation of the parameters was obtained. The results were compared using the Wilcoxon signed-rank test. Results: The moco-ss-LGE images had better IQ scores than the bh-ss-LGE images (4.55 ± 0.55 vs. 3.68 ± 0.45, p < 0.001). The CNR of the scar to the remote myocardium (34.46 ± 11.85 vs. 26.13 ± 10.04, p < 0.001), scar to left ventricle (LV) cavity (13.09 ± 7.95 vs. 9.84 ± 6.65, p = 0.030), and LV cavity to remote myocardium (33.12 ± 15.53 vs. 22.69 ± 11.27, p < 0.001) were consistently greater for moco-ss-LGE images than for bh-ss-LGE images. Measurements of scar size did not differ significantly between LGE pairs using the following three different quantification methods: 1) full width at half-maximum method; 23.84 ± 12.88% vs. 24.05 ± 12.81% (p = 0.820), 2) 6-standard deviation method, 15.14 ± 10.78% vs. 15.99 ± 10.99% (p = 0.186), and 3) 3-standard deviation method; 36.51 ± 17.60% vs. 37.50 ± 17.90% (p = 0.785). Conclusion: Motion-corrected averaging may allow for superior IQ and CNRs with free-breathing in single-shot LGE imaging, with a herald of free-breathing moco-ss-LGE as the scar imaging technique of choice for clinical practice.

Blood-Brain Barrier Disruption in Mild Traumatic Brain Injury Patients with Post-Concussion Syndrome: Evaluation with Region-Based Quantification of Dynamic Contrast-Enhanced MR Imaging Parameters Using Automatic Whole-Brain Segmentation

  • Heera Yoen;Roh-Eul Yoo;Seung Hong Choi;Eunkyung Kim;Byung-Mo Oh;Dongjin Yang;Inpyeong Hwang;Koung Mi Kang;Tae Jin Yun;Ji-hoon Kim;Chul-Ho Sohn
    • Korean Journal of Radiology
    • /
    • v.22 no.1
    • /
    • pp.118-130
    • /
    • 2021
  • Objective: This study aimed to investigate the blood-brain barrier (BBB) disruption in mild traumatic brain injury (mTBI) patients with post-concussion syndrome (PCS) using dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging and automatic whole brain segmentation. Materials and Methods: Forty-two consecutive mTBI patients with PCS who had undergone post-traumatic MR imaging, including DCE MR imaging, between October 2016 and April 2018, and 29 controls with DCE MR imaging were included in this retrospective study. After performing three-dimensional T1-based brain segmentation with FreeSurfer software (Laboratory for Computational Neuroimaging), the mean Ktrans and vp from DCE MR imaging (derived using the Patlak model and extended Tofts and Kermode model) were analyzed in the bilateral cerebral/cerebellar cortex, bilateral cerebral/cerebellar white matter (WM), and brainstem. Ktrans values of the mTBI patients and controls were calculated using both models to identify the model that better reflected the increased permeability owing to mTBI (tendency toward higher Ktrans values in mTBI patients than in controls). The Mann-Whitney U test and Spearman rank correlation test were performed to compare the mean Ktrans and vp between the two groups and correlate Ktrans and vp with neuropsychological tests for mTBI patients. Results: Increased permeability owing to mTBI was observed in the Patlak model but not in the extended Tofts and Kermode model. In the Patlak model, the mean Ktrans in the bilateral cerebral cortex was significantly higher in mTBI patients than in controls (p = 0.042). The mean vp values in the bilateral cerebellar WM and brainstem were significantly lower in mTBI patients than in controls (p = 0.009 and p = 0.011, respectively). The mean Ktrans of the bilateral cerebral cortex was significantly higher in patients with atypical performance in the auditory continuous performance test (commission errors) than in average or good performers (p = 0.041). Conclusion: BBB disruption, as reflected by the increased Ktrans and decreased vp values from the Patlak model, was observed throughout the bilateral cerebral cortex, bilateral cerebellar WM, and brainstem in mTBI patients with PCS.

Development and Validation of an Official Analytical Method for Determination of Ipfencarbazone in Agricultural Products using GC-ECD (GC-ECD를 이용한 농산물 중 Ipfencarbazone의 신규분석법 개발 및 검증)

  • Jang, Jin;Kim, Heejung;Lee, Eun-Hyang;Ko, Ah-Young;Ju, Yunji;Kim, Sooyeon;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.210-217
    • /
    • 2015
  • Ipfencarbazone is a herbicide of the tetrazolinone class, and is believed to be an inhibitor of very long chain fatty acids (VLCFAs), which control cell division in weeds. The objective of this study was to develop and validate an official analytical method for ipfencarbazone determination in agricultural products. The ipfencarbazone residues in agricultural products were extracted with acetone, partitioned with n-hexane, and then purified through silica SPE cartridge. Finally, the analyte was quantified by gas chromatograph-electron capture detector (GC-ECD) and confirmed with gas chromatograph/mass spectrometer(GC/MS). The linear range of ipfencarbazone was 0.01 to 1.0 mg/L with the coefficient of determination ($r^2$) of 0.9999. The limit of detection (LOD) and quantification (LOQ) was 0.003 and 0.01 mg/kg, respectively. In addition, average recoveries of ipfencarbazone ranged from 80.6% to 112.3% at the different concentration levels LOQ, 10LOQ and 50LOQ, while the relative standard deviation was 2.2-8.6%. All values were consistent with the criteria ranges requested in the CODEX guidelines. Furthermore, and inter-laboratory study was conducted to validate the method. This proposed method for determination of ipfencarbazone residues in agricultural products can be used as an official analytical method.

Optimization of Analytical Methods for Ochratoxin A and Zearalenone by UHPLC in Rice Straw Silage and Winter Forage Crops (UHPLC를 이용한 볏짚 사일리지와 동계사료작물의 오크라톡신과 제랄레논 분석법 최적화)

  • Ham, Hyeonheui;Mun, Hye Yeon;Lee, Kyung Ah;Lee, Soohyung;Hong, Sung Kee;Lee, Theresa;Ryu, Jae-Gee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.36 no.4
    • /
    • pp.333-339
    • /
    • 2016
  • The objective of this study was to optimize analytical methods for ochratoxin A (OTA) and zearalenone (ZEA) in rice straw silage and winter forage crops using ultra-high performance liquid chromatography (UHPLC). Samples free of mycotoxins were spiked with $50{\mu}g/kg$, $250{\mu}g/kg$, or $500{\mu}g/kg$ of OTA and $300{\mu}g/kg$, $1500{\mu}g/kg$, or $3000{\mu}g/kg$ of ZEA. OTA and ZEA were extracted by acetonitrile and cleaned-up using an immunoaffinity column. They were then subjected to analysis with UHPLC equipped with a fluorescence detector. The correlation coefficients of calibration curves showed high linearity ($R^2{\geq_-}0.9999$ for OTA and $R^2{\geq_-}0.9995$ for ZEA). The limit of detection and quantification were $0.1{\mu}g/kg$ and $0.3{\mu}g/kg$, respectively, for OTA and $5{\mu}g/kg$ and $16.7{\mu}g/kg$, respectively, for ZEA. The recovery and relative standard deviation (RSD) of OTA were as follows: rice straw = 84.23~95.33%, 2.59~4.77%; Italian ryegrass = 79.02~95%, 0.86~5.83%; barley = 74.93~97%, 0.85~9.19%; rye = 77.99~96.67%, 0.33~6.26%. The recovery and RSD of ZEA were: rice straw = 109.6~114.22%, 0.67~7.15%; Italian ryegrass = 98.01~109.44%, 1.65~4.81%; barley = 98~113.53%, 0.25~5.85%; rye = 90.44~108.56%, 2.5~4.66%. They both satisfied the standards of European Commission criteria (EC 401-2006) for quantitative analysis. These results showed that the optimized methods could be used for mycotoxin analysis of forages.

The Study on the Priority of First Person Shooter game Elements using Delphi Methodology (FPS게임 구성요소의 중요도 분석방법에 관한 연구 1 -델파이기법을 이용한 독립요소의 계층설계와 검증을 중심으로-)

  • Bae, Hye-Jin;Kim, Suk-Tae
    • Archives of design research
    • /
    • v.20 no.3 s.71
    • /
    • pp.61-72
    • /
    • 2007
  • Having started with "Space War", the first game produced by MIT in the 1960's, the gaming industry expanded rapidly and grew to a large size over a short period of time: the brand new games being launched on the market are found to contain many different elements making up a single content in that it is often called the 'the most comprehensive ultimate fruits' of the design technologies. This also translates into a large increase in the number of things which need to be considered in developing games, complicating the plans on the financial budget, the work force, and the time to be committed. Therefore, an approach for analyzing the elements which make up a game, computing the importance of each of them, and assessing those games to be developed in the future, is the key to a successful development of games. Many decision-making activities are often required under such a planning process. The decision-making task involves many difficulties which are outlined as follows: the multi-factor problem; the uncertainty problem impeding the elements from being "quantified" the complex multi-purpose problem for which the outcome aims confusion among decision-makers and the problem with determining the priority order of multi-stages leading to the decision-making process. In this study we plan to suggest AHP (Analytic Hierarchy Process) so that these problems can be worked out comprehensively, and logical and rational alternative plan can be proposed through the quantification of the "uncertain" data. The analysis was conducted by taking FPS (First Person Shooting) which is currently dominating the gaming industry, as subjects for this study. The most important consideration in conducting AHP analysis is to accurately group the elements of the subjects to be analyzed objectively, and arrange them hierarchically, and to analyze the importance through pair-wise comparison between the elements. The study is composed of 2 parts of analyzing these elements and computing the importance between them, and choosing an alternative plan. Among these this paper is particularly focused on the Delphi technique-based objective element analyzing and hierarchy of the FPS games.

  • PDF

Development of an Analytical Method for the Determination of Pyriofenone residue in Agricultural Products using HPLC-UVD (HPLC-UVD를 이용한 농산물 중 살균제 pyriofenone 분석법 확립)

  • Park, Hyejin;Kim, HeeJung;Do, Jung-Ah;Kwon, Ji-Eun;Yoon, Ji-Young;Lee, Ji-Young;Chang, Moon-Ik;Rhee, Gyu-Seek
    • The Korean Journal of Pesticide Science
    • /
    • v.18 no.2
    • /
    • pp.79-87
    • /
    • 2014
  • Pyriofenone is an aryl phenyl ketone fungicide that is newly registered in Korea in 2013 to control powdery mildew on food. The objective of this study was to develop reliable and sensitive analytical method for determination of pyriofenone residue in agricultural products for ensuring the food safety. The pyriofenone residues in all samples(Korean melon, pepper, potato, mandarin, soybean, and hulled rice) were extracted with acetonitrile, partitioned with dichloromethane, and then purified with a silica cartridge. The purified samples were analyzed by HPLC-UVD and confirmed with LC-MS. The linear range of pyriofenone was 0.05~5 mg/kg with the correlation coefficient ($r^2$) > 0.999. Average recoveries of pyriofenone ranged from 72.8% to 99.5% at the spiked level of 0.05 and 0.5 mg/kg, while the relative standard deviation was 2.3%~6.4%. In addition, the limit of detection and limit of quantification were 0.01 and 0.05 mg/kg, respectively. The results revealed that the developed and validated analytical method was suitable for pyriofenone determination in agricultural products.