• Title/Summary/Keyword: Objective method

Search Result 11,291, Processing Time 0.043 seconds

An inverse approach based on uniform load surface for damage detection in structures

  • Mirzabeigy, Alborz;Madoliat, Reza
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.233-242
    • /
    • 2019
  • In this paper, an inverse approach based on uniform load surface (ULS) is presented for structural damage localization and quantification. The ULS is excellent approximation for deformed configuration of a structure under distributed unit force applied on all degrees of freedom. The ULS make use of natural frequencies and mode shapes of structure and in mathematical point of view is a weighted average of mode shapes. An objective function presented to damage detection is discrepancy between the ULS of monitored structure and numerical model of structure. Solving this objective function to find minimum value yields damage's parameters detection. The teaching-learning based optimization algorithm has been employed to solve inverse problem. The efficiency of present damage detection method is demonstrated through three numerical examples. By comparison between proposed objective function and another objective function which make use of natural frequencies and mode shapes, it is revealed present objective function have faster convergence and is more sensitive to damage. The method has good robustness against measurement noise and could detect damage by using the first few mode shapes. The results indicate that the proposed method is reliable technique to damage detection in structures.

An optimal design of wind turbine and ship structure based on neuro-response surface method

  • Lee, Jae-Chul;Shin, Sung-Chul;Kim, Soo-Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.4
    • /
    • pp.750-769
    • /
    • 2015
  • The geometry of engineering systems affects their performances. For this reason, the shape of engineering systems needs to be optimized in the initial design stage. However, engineering system design problems consist of multi-objective optimization and the performance analysis using commercial code or numerical analysis is generally time-consuming. To solve these problems, many engineers perform the optimization using the approximation model (response surface). The Response Surface Method (RSM) is generally used to predict the system performance in engineering research field, but RSM presents some prediction errors for highly nonlinear systems. The major objective of this research is to establish an optimal design method for multi-objective problems and confirm its applicability. The proposed process is composed of three parts: definition of geometry, generation of response surface, and optimization process. To reduce the time for performance analysis and minimize the prediction errors, the approximation model is generated using the Backpropagation Artificial Neural Network (BPANN) which is considered as Neuro-Response Surface Method (NRSM). The optimization is done for the generated response surface by non-dominated sorting genetic algorithm-II (NSGA-II). Through case studies of marine system and ship structure (substructure of floating offshore wind turbine considering hydrodynamics performances and bulk carrier bottom stiffened panels considering structure performance), we have confirmed the applicability of the proposed method for multi-objective side constraint optimization problems.

Extension of the dynamic anti-reset windup method (다이나믹 리셋 와인드엎 방지방법의 확장)

  • 박종구;최종호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.73-76
    • /
    • 1996
  • This paper presents a dynamical anti-reset windup (ARW) compensation method for saturating control systems with multiple controllers and/or multiloop configuration. By regarding the difference of the controller states in the absence and presence of saturating actuators as an objective function, the dynamical compensator which minimize the objective function are derived in an integrated fashion. The proposed dynamical compensator is a closed form of the plant and controller parameters. The proposed method guarantees total stability of resulting system. An illustrative example is given to show the effectiveness of the proposed method.

  • PDF

Particle tracking algorithm for the Lagrangian-Eulerian finite element method

  • 석희준
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.97-100
    • /
    • 2004
  • Multivariate Newton Raphson method is developed to perform the particle tracking in the three dimensional area using four objective functions. In this method, three variables are solved to compute target point and actual and real tracking time. The simulated pathlines in various types of three dimensional elements are well matched with exact pathline.

  • PDF

Suggestion for Objective Evaluation of Comparative Pulse Diagnosis

  • Jun-Sang Yu
    • Journal of Pharmacopuncture
    • /
    • v.27 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • Objectives: Pulse is a method of Korean medicine diagnosis and is an important clue to detect the organs, nature, and progress of the disease. Pulse examination is included in the basic examination of Korean medicine doctors, but there is no standardized method for diagnosing pulse although the types and methods of the pulse taking are briefly described in the literature, making it difficult to spread the examination method. In this regard, I would like to propose an objective evaluation method. Methods: Although the importance of pulse examination and the method of pulse examination are known in the literature, it is difficult for undergraduate students or inexperienced Korean medicine doctors to access it, so in this paper a method of marking the size of the pulse power in the blank space for objective evaluation was devised and presented. Results: The size of the pulse power should be indicated using the 1-cell, 3-cell, or 5-cell method according to the left and right wrists and the cun, guan and chi on both sides. Conclusion: The method of pulse diagnosis is an important diagnostic method as a verification process for making a Korean medical diagnosis. The remaining Korean medicine diagnostic methods, including pulse diagnosis, also need to undergo objectification. It is believed that the objectification of these diagnostic methods will lead to an improvement in the treatment rate of Korean medicine.

Performance Comparison and Duration Model Improvement of Speaker Adaptation Methods in HMM-based Korean Speech Synthesis (HMM 기반 한국어 음성합성에서의 화자적응 방식 성능비교 및 지속시간 모델 개선)

  • Lee, Hea-Min;Kim, Hyung-Soon
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.111-117
    • /
    • 2012
  • In this paper, we compare the performance of several speaker adaptation methods for a HMM-based Korean speech synthesis system with small amounts of adaptation data. According to objective and subjective evaluations, a hybrid method of constrained structural maximum a posteriori linear regression (CSMAPLR) and maximum a posteriori (MAP) adaptation shows better performance than other methods, when only five minutes of adaptation data are available for the target speaker. During the objective evaluation, we find that the duration models are insufficiently adapted to the target speaker as the spectral envelope and pitch models. To alleviate the problem, we propose the duration rectification method and the duration interpolation method. Both the objective and subjective evaluations reveal that the incorporation of the proposed two methods into the conventional speaker adaptation method is effective in improving the performance of the duration model adaptation.

An Achievement rate Approach to Linear Programming Problems with Convex Polyhedral Objective Coefficients

  • Inuiguchi, Masahiro;Tanino, Tetsuzo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.501-505
    • /
    • 1998
  • In this paper, an LP problem with convex polyhedral objective coefficients is treated. In the problem, the interactivities of the uncertain objective coefficients are represented by a bounded convex polyhedron (a convex polytope). We develop a computation algorithm of a maxmin achievement rate solution. To solve the problem, first, we introduce the relaxation procedure. In the algorithm, a sub-problem, a bilevel programing problem, should be solved. To solve the sub-problem, we develop a solution method based on a branch and bound method. As a result, it is shown that the problem can be solved by the repetitional use of the simplex method.

  • PDF

Development of Interface Between Optimization Solver and Commercial EM Software for Design of Electromagnetic Devices (상용 전자장 해석 프로그램 연동을 위한 전기기기 최적설계 인터페이스 개발)

  • Kim, Min-Ho;Byun, Jin-Kyu
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.45-48
    • /
    • 2009
  • In this paper, we use the optimization design theory based on the finite element method and implement the optimal design of electromagnetic devices using COMSOL interface. COMSOL is one of the commercial EM software. Shape information for the design optimization is extracted by CAD in EM software. To calculate the shape of optimal design, sensitive analysis is applied to the design processing in MATLAB. To achieve the design objective in this paper, objective function is defined. According to the sensitive analysis based on the finite element method, we change the design variable after the sensitivity of the objective function is computed. To verify the proposed method, the results are compared with the initial design.

  • PDF

Multi-Objective Controller Design using a Rank-Constrained Linear Matrix Inequality Method (계수조건부 LMI를 이용한 다목적 제어기 설계)

  • Kim, Seog-Joo;Kim, Jong-Moon;Cheon, Jong-Min;Kwon, Soon-Mam
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.67-71
    • /
    • 2009
  • This paper presents a rank-constrained linear matrix inequality (LMI) approach to the design of a multi-objective controller such as $H_2/H_{\infty}$ control. Multi-objective control is formulated as an LMI optimization problem with a nonconvex rank condition, which is imposed on the controller gain matirx not Lyapunov matrices. With this rank-constrained formulation, we can expect to reduce conservatism because we can use separate Lyapunov matrices for different control objectives. An iterative penalty method is applied to solve this rank-constrained LMI optimization problem. Numerical experiments are performed to illustrate the proposed method.

Using Fuzzy Neural Network to Assess Network Video Quality

  • Shi, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.7
    • /
    • pp.2377-2389
    • /
    • 2022
  • At present people have higher and higher requirements for network video quality, but video quality will be impaired by various factors, so video quality assessment has become more and more important. This paper focuses on the video quality assessment method using different fuzzy neural networks. Firstly, the main factors that impair the video quality are introduced, such as unit time jamming times, average pause time, blur degree and block effect. Secondly, two fuzzy neural network models are used to build the objective assessment method. By adjusting the network structure to optimize the assessment model, the objective assessment value of video quality is obtained. Meanwhile the advantages and disadvantages of the two models are analysed. Lastly, the proposed method is compared with many recent related assessment methods. This paper will give the experimental results and the detail of assessment process.