• Title/Summary/Keyword: Objective

Search Result 41,943, Processing Time 0.059 seconds

POI Recommendation Method Based on Multi-Source Information Fusion Using Deep Learning in Location-Based Social Networks

  • Sun, Liqiang
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.352-368
    • /
    • 2021
  • Sign-in point of interest (POI) are extremely sparse in location-based social networks, hindering recommendation systems from capturing users' deep-level preferences. To solve this problem, we propose a content-aware POI recommendation algorithm based on a convolutional neural network. First, using convolutional neural networks to process comment text information, we model location POI and user latent factors. Subsequently, the objective function is constructed by fusing users' geographical information and obtaining the emotional category information. In addition, the objective function comprises matrix decomposition and maximisation of the probability objective function. Finally, we solve the objective function efficiently. The prediction rate and F1 value on the Instagram-NewYork dataset are 78.32% and 76.37%, respectively, and those on the Instagram-Chicago dataset are 85.16% and 83.29%, respectively. Comparative experiments show that the proposed method can obtain a higher precision rate than several other newer recommended methods.

A comparison of three multi-objective evolutionary algorithms for optimal building design

  • Hong, Taehoon;Lee, Myeonghwi;Kim, Jimin;Koo, Choongwan;Jeong, Jaemin
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.656-657
    • /
    • 2015
  • Recently, Multi-Objective Optimization of design elements is an important issue in building design. Design variables that considering the specificities of the different environments should use the appropriate algorithm on optimization process. The purpose of this study is to compare and analyze the optimal solution using three evolutionary algorithms and energy modeling simulation. This paper consists of three steps: i)Developing three evolutionary algorithm model for optimization of design elements ; ii) Conducting Multi-Objective Optimization based on the developed model ; iii) Conducting comparative analysis of the optimal solution from each of the algorithms. Including Non-dominated Sorted Genetic Algorithm (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO) and Random Search were used for optimization. Each algorithm showed similar range of result data. However, the execution speed of the optimization using the algorithm was shown a difference. NSGA-II showed the fastest execution speed. Moreover, the most optimal solution distribution is derived from NSGA-II.

  • PDF

Study on multi-objective optimization method for radiation shield design of nuclear reactors

  • Yao Wu;Bin Liu;Xiaowei Su;Songqian Tang;Mingfei Yan;Liangming Pan
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.520-525
    • /
    • 2024
  • The optimization design problem of nuclear reactor radiation shield is a typical multi-objective optimization problem with almost 10 sub-objectives and the sub-objectives are always demanded to be under tolerable limits. In this paper, a design method combining multi-objective optimization algorithms with paralleling discrete ordinate transportation code is developed and applied to shield design of the Savannah nuclear reactor. Three approaches are studied for light-weighted and compact design of radiation shield. Comparing with directly optimization with 10 objectives and the single-objective optimization, the approach by setting sub-objectives representing weight and volume as optimization objectives while treating other sub-objectives as constraints has the best performance, which is more suitable to reactor shield design.

A novel PSO-based algorithm for structural damage detection using Bayesian multi-sample objective function

  • Chen, Ze-peng;Yu, Ling
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.825-835
    • /
    • 2017
  • Significant improvements to methodologies on structural damage detection (SDD) have emerged in recent years. However, many methods are related to inversion computation which is prone to be ill-posed or ill-conditioning, leading to low-computing efficiency or inaccurate results. To explore a more accurate solution with satisfactory efficiency, a PSO-INM algorithm, combining particle swarm optimization (PSO) algorithm and an improved Nelder-Mead method (INM), is proposed to solve multi-sample objective function defined based on Bayesian inference in this study. The PSO-based algorithm, as a heuristic algorithm, is reliable to explore solution to SDD problem converted into a constrained optimization problem in mathematics. And the multi-sample objective function provides a stable pattern under different level of noise. Advantages of multi-sample objective function and its superior over traditional objective function are studied. Numerical simulation results of a two-storey frame structure show that the proposed method is sensitive to multi-damage cases. For further confirming accuracy of the proposed method, the ASCE 4-storey benchmark frame structure subjected to single and multiple damage cases is employed. Different kinds of modal identification methods are utilized to extract structural modal data from noise-contaminating acceleration responses. The illustrated results show that the proposed method is efficient to exact locations and extents of induced damages in structures.

Available Transfer Capability Evaluation Considering CO2 Emissions Using Multi-Objective Particle Swarm Optimization (CO2 배출량을 고려한 가용송전용량 계산에 관한 연구)

  • Chyun, Yi-Kyung;Kim, Mun-Kyeom;Lyu, Jae-Kun;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1017-1024
    • /
    • 2010
  • Under the Kyoto Protocol many countries have been requested to participate in emissions trading with the assigned $CO_2$ emissions. In this environment, it is inevitable to change the system and market operation in deregulated power systems, and then ensuring safety margin is becoming more important for balancing system security, economy and $CO_2$ emissions. Nowadays, available transfer capability (ATC) is a key index of the remaining capability of a transmission system for future transactions. This paper presents a novel approach to the ATC evaluation with $CO_2$ emissions using multi-objective particle swarm optimization (MOPSO) technique. This technique evolves a multi-objective version of PSO by proposing redefinition of global best and local best individuals in multi-objective optimization domain. The optimal power flow (OPF) method using MOPSO is suggested to solve multi-objective functions including fuel cost and $CO_2$ emissions simultaneously. To show its efficiency and effectiveness, the results of the proposed method is comprehensively realized by a comparison with the ATC which is not including $CO_2$ emissions for the IEEE 30-bus system, and is found to be quite promising.

Nonlinear Excitation Control Design of Generator Based on Multi-objective Feedback

  • Chen, Dengyi;Li, Xiaocong;Liu, Song
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2187-2195
    • /
    • 2018
  • In order to realize the multi-objective control of single-input multi-output nonlinear differential algebraic system (NDAS) and to improve the dynamic characteristics and static accuracy, a design method of nonlinear control with multi-objective feedback (NCMOF) is proposed, the principium of this method to arrange system poles, as well as its nature to coordinate dynamic characteristics and static accuracy of the system are analyzed in detail. Through NCMOF design method, the multi-objective control of the system is transformed into linear space, and then it is effectively controlled under the nonlinear feedback control law, the problem to balance all control objectives caused by less input and more output of the system thus is solved. Applying NCMOF design method to generator excitation system, the nonlinear excitation control law with terminal voltage, active power and rotor speed as objective outputs is designed. Simulation results show that NCMOF can not only improve the dynamic characteristics of generator, but also damp the mechanical oscillation of a generator in transient process. Moreover, NCMOF can control the terminal voltage of the generator to the setting value with no static error under typical disturbances.

Multi-Objective Optimization for Orthotrpic Steel Deck Bridges (강상판교의 다목적 최적설계)

  • Cho, Hyo Nam;Chung, Jee Seung;Min, Dae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.3
    • /
    • pp.395-402
    • /
    • 2002
  • This study proposed a muti-objective optimum design method for rational optimizing of orthotropic steel deck bridges. This multi-objective optimum design method was found to be effective in optimizing multi-objective problems, considering cost and deflection functions. It may ve difficult to optimize orthotropic steel deck bridges using a conventional optimization, since the bridges have several parts and show complex structural behaviors. Therefore, the Pareto curve can be obtained by performing the multi-objective optimization for real orthotropic steel deck bridges, using the multi-level technique with excellent efficiency. A reasonable and economical design can be attained using the Parato curve in the cost and deflection functions of the bridge. Thus, more reasonable design values can be determined based on a comparison with those using a conventional design procedure.

Development of Pareto strategy multi-objective function method for the optimum design of ship structures

  • Na, Seung-Soo;Karr, Dale G.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.6
    • /
    • pp.602-614
    • /
    • 2016
  • It is necessary to develop an efficient optimization technique to perform optimum designs which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of ship structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points well by spreading points randomly entire the design spaces. In this paper, Pareto Strategy (PS) multi-objective function method is developed by considering the search direction based on Pareto optimal points, the step size, the convergence limit and the random number generation. The success points between just before and current Pareto optimal points are considered. PS method can also apply to the single objective function problems, and can consider the discrete design variables such as plate thickness, longitudinal space, web height and web space. The optimum design results are compared with existing Random Search (RS) multi-objective function method and Evolutionary Strategy (ES) multi-objective function method by performing the optimum designs of double bottom structure and double hull tanker which have discrete design values. Its superiority and effectiveness are shown by comparing the optimum results with those of RS method and ES method.

The Effect of Atmospheric Flow Field According to the Radius Influence and Nudging Coefficient of the Objective Analysis on Complex Area (자료동화의 영향반경과 동화강도가 복잡지형 기상장 수치모의에 미치는 영향)

  • Choi, Hyun-Jung;Lee, Hwa-Woon;Sung, Kyoung-Hee;Kim, Min-Jung
    • Journal of Environmental Science International
    • /
    • v.18 no.3
    • /
    • pp.271-281
    • /
    • 2009
  • In order to reduce the uncertainties and improve the air flow field, objective analysis using observational data is chosen as a method that enhances the reality of meteorology. To improve the meteorological components, the radius influence and nudging coefficient of the objective analysis should perform a adequate value on complex area for the objective analysis technique which related to data reliability and error suppression. Several numerical experiments have been undertaken in order to clarify the impacts of the radius influence and nudging coefficient of the objective analysis on meteorological environments. By analyzing practical urban ground conditions, we revealed that there were large differences in the meteorological differences in each case. In order to understand the quantitative impact of each run, the Statistical analysis by estimated by MM5 revealed the differences by the synoptic conditions. The strengthening of the synoptic wind condition tends to be well estimated when using quite a wide radius influence and a small nudging coefficient. On the other hand, the weakening of the synoptic wind is opposite.

A robust multi-objective localized outrigger layout assessment model under variable connecting control node and space deposition

  • Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.767-776
    • /
    • 2019
  • In this article, a simple and robust multi-objective assessment method to control design angles and node positions connected among steel outrigger truss members is proposed to approve both structural safety and economical cost. For given outrigger member layouts, the present method utilizes general-purpose prototypes of outrigger members, having resistance to withstand lateral load effects directly applied to tall buildings, which conform to variable connecting node and design space deposition. Outrigger layouts are set into several initial design conditions of height to width of an arbitrary given design space, i.e., variable design space. And then they are assessed in terms of a proposed multi-objective function optimizing both minimal total displacement and material quantity subjected to design impact factor indicating the importance of objectives. To evaluate the proposed multi-objective function, an analysis model uses a modified Maxwell-Mohr method, and an optimization model is defined by a ground structure assuming arbitrary discrete straight members. It provides a new robust assessment model from a local design point of view, as it may produce specific optimal prototypes of outrigger layouts corresponding to arbitrary height and width ratio of design space. Numerical examples verify the validity and robustness of the present assessment method for controlling prototypes of outrigger truss members considering a multi-objective optimization achieving structural safety and material cost.