In order to utilize remote sensed images effectively, a lot of image classification methods are suggested for many years. But, the accuracy of traditional methods based on pixel-based classification is not high in general. In this study, object oriented classification based on image segmentation is used to classify Landsat images. A necessary prerequisite for object oriented image classification is successful image segmentation. Object oriented image classification, which is based on fuzzy logic, allows the integration of a broad spectrum of different object features, such as spectral values , shape and texture. Landsat images are divided into urban, agriculture, forest, grassland, wetland, barren and water in sochon-gun, Chungcheongnam-do using object oriented classification algorithms in this paper. Preliminary results will help to perform an automatic image classification in the future.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.33
no.3
/
pp.173-179
/
2015
In this paper, object-based classification of urban areas based on a combination of information from lidar and aerial images is introduced. High resolution images are frequently used in automatic classification, making use of the spectral characteristics of the features under study. However, in urban areas, pixel-based classification can be difficult since building colors differ and the shadows of buildings can obscure building segmentation. Therefore, if the boundaries of buildings can be extracted from lidar, this information could improve the accuracy of urban area classifications. In the data processing stage, lidar data and the aerial image are co-registered into the same coordinate system, and a local maxima filter is used for the building segmentation of lidar data, which are then converted into an image containing only building information. Then, multiresolution segmentation is achieved using a scale parameter, and a color and shape factor; a compactness factor and a layer weight are implemented for the classification using a class hierarchy. Results indicate that lidar can provide useful additional data when combined with high resolution images in the object-oriented hierarchical classification of urban areas.
The overall objective of this research was to investigate various combination of segmentation parameters and to improve classification accuracy of object-oriented classification. This research presents a method for evaluation of segmentation parameters by calculating Moran's I and Intrasegment Variance. This research used Landsat-7/ETM image of $11{\times}14$ Km developed area in Ansung, Korea. Segmented images are generated by 75 combinations of parameter. Selecting 7 combinations of high, middle and low grade expected classification accuracy was based on calculated Moran's I and Intrasegment Variance. Selected segmentation images are classified 4 classes and analyzed classification accuracy according to method of objected-oriented classification. The research result proved that classification accuracy is related to segmentation parameters. The case of high grade of expected classification accuracy showed more than 85% overall accuracy. On the other hand, low ado showed around 50% overall accuracy.
Ham, Bo Young;Lee, Chun Yong;Byun, Hye Kyung;Min, Byoung Keol
Journal of Korean Society for Geospatial Information Science
/
v.21
no.3
/
pp.11-17
/
2013
With high social demands for the diverse utilizations of forest lands, the illegal forest land use changes have increased. We studied change detection technique to detect changes in forest land use using an object-oriented segmentation of RED bands differencing in multi-temporal aerial photographs. The new object-oriented segmentation method consists of the 5 steps, "Image Composite - Segmentation - Reshaping - Noise Remover - Change Detection". The method enabled extraction of deforested objects by selecting a suitable threshold to determine whether the objects was divided or merged, based on the relations between the objects, spectral characteristics and contextual information from multi-temporal aerial photographs. The results found that the object-oriented segmentation method detected 12% of changes in forest land use, with 96% of the average detection accuracy compared by visual interpretation. Therefore this research showed that the spatial data by the object-oriented segmentation method can be complementary to the one by a visual interpretation method, and proved the possibility of automatically detecting and extracting changes in forest land use from multi-temporal aerial photographs.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
1997.06a
/
pp.19-24
/
1997
This paper describes an image segmentation technique for the object-oriented coding at very low bit rates. By noting that, in the object-oriented coding technique, each objects are represented by 3 parameters, namely, shape, motion, and color informations, we propose a segmentation technique, in which the 3 parameters are fully exploited. To achieve this goal, starting with the color space conversion and the noise reduction, the input image is divided into many small regions by the K-menas algorithm on the O-K-S color space. Then, each regions are merged, according to the shape and motion information. In simultations, it is shown that the proposed technique segments the input image into relevant objects, according to the shape and motion as well as the colors. In addition, in order to evaluate the performance of the proposed technique, we introduce the notion of the interesting regions, and provide the results of encoding the image with emphasizing the interesting regions.
Moving object boundary is very important for moving object segmentation. But the moving object boundary shows broken boundary We invent a novel space-oriented boundary linking algorithm to link the broken boundary The boundary linking algorithm forms a quadrant around the terminating pixel in the broken boundary and searches forward other terminating pixel to link within a radius. The boundary linking algorithm guarantees shortest distance linking. We also register the background from image sequence. We construct two object masks, one from the result of boundary linking and the other from the registered background, and use these two complementary object masks together for moving object segmentation. We also suppress the moving cast shadow using Roberts gradient operator. The major advantages of the proposed algorithms are more accurate moving object segmentation and the segmentation of the object which has holes in its region using these two object masks. We experiment the algorithms using the standard MPEG-4 test sequences and real video sequence. The proposed algorithms are very efficient and can process QCIF image more than 48 fps and CIF image more than 19 fps using a 2.0GHz Pentium-4 computer.
Journal of the Korea Society of Computer and Information
/
v.29
no.2
/
pp.13-20
/
2024
This paper introduces a method for generating model images that can identify specific cylindrical medicine containers in videos and investigates data collection techniques. Previous research had separated object detection from specific object recognition, making it challenging to apply automated image stitching. A significant issue was that the coordinate-based object detection method included extraneous information from outside the object area during the image stitching process. To overcome these challenges, this study applies the newly released YOLOv8 (You Only Look Once) segmentation technique to vertically rotating pill bottles video and employs the ORB (Oriented FAST and Rotated BRIEF) feature matching algorithm to automate model image generation. The research findings demonstrate that applying segmentation techniques improves recognition accuracy when identifying specific pill bottles. The model images created with the feature matching algorithm could accurately identify the specific pill bottles.
One of future remote sensing techniques for transportation application is vehicle detection from the space, which could be the basis of measuring traffic volume and recognizing traffic condition in the future. This paper introduces an approach to vehicle detection using image object segmentation approach. The object-oriented image processing is particularly beneficial to high-resolution image classification of urban area, which suffers from noisy components in general. The project site was Dae-Jeon metropolitan area and a set of true color aerial images at 10cm resolution was used for the test. Authors investigated a variety of parameters such as scale, color, and shape and produced a customized solution for vehicle detection, which is based on a knowledge-based hierarchical model in the environment of eCognition. The highest tumbling block of the vehicle detection in the given data sets was to discriminate vehicles in dark color from new black asphalt pavement. Except for the cases, the overall accuracy was over 90%.
Recent developments in sensor technologies have provided remotely sensed data with very high spatial resolution. In order to fully utilize the potential of high resolution images, new image classification strategies are necessary. Unfortunately, the high resolution images increase the spectral within-field variability, and the classification accuracy of traditional methods based on pixel-based classification algorithms such as Maximum-Likelihood method may be decreased (Schiewe 2001). Recent development in Object Oriented Classification based on image segmentation algorithms can be used for the classification of forest patches on rugged terrain of Korea. The objectives of this paper are as follows. First, to compare the pros and cons of image classification methods based on pixel-based and object oriented classification algorithm for the forest patch classification. Landsat ETM+ data and IKONOS data will be used for the classification. Second, to investigate ways to increase classification accuracy of forest patches. Supplemental data such as DTM and Forest Type Map of 1:25,000 scale are used for topographic correction and image segmentation. Third, to propose the best classification strategy for forest patch classification in terms of accuracy and data requirement. The research site for this paper is Namhansansung Provincial Park located at the eastern suburb of Seoul Metropolitan City for its diverse forest patch types and data availability. Both Landsat ETM+ and IKONOS data are used for the classification. Preliminary results can be summarized as follows. First, topographic correction of reflectance is essential for the classification of forest patches on rugged terrain. Second, object oriented classification of IKONOS data enables higher classification accuracy compared to Landsat ETM+ and pixel-based classification. Third, multi-stage segmentation is very useful to investigate landscape ecological aspect of forest communities of Korea.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.28
no.6
/
pp.627-636
/
2010
Image segmentation technique is becoming increasingly important in the field of remote sensing image analysis in areas such as object oriented image classification to extract object regions of interest within images. This paper presents a new method for image segmentation to consider spectral and spatial information of high resolution satellite image. Firstly, the initial seeds were automatically selected using local variation of multi-spectral edge information. After automatic selection of significant seeds, a segmentation was achieved by applying MSRG which determines the priority of region growing using information drawn from similarity between the extracted each seed and its neighboring points. In order to evaluate the performance of the proposed method, the results obtained using the proposed method were compared with the results obtained using conventional region growing and watershed method. The quantitative comparison was done using the unsupervised objective evaluation method and the object-based classification result. Experimental results demonstrated that the proposed method has good potential for application in the object-based analysis of high resolution satellite images.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.