• Title/Summary/Keyword: Object-based Change Detection

Search Result 125, Processing Time 0.023 seconds

Algorithm for Detection of Fire Smoke in a Video Based on Wavelet Energy Slope Fitting

  • Zhang, Yi;Wang, Haifeng;Fan, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.557-571
    • /
    • 2020
  • The existing methods for detection of fire smoke in a video easily lead to misjudgment of cloud, fog and moving distractors, such as a moving person, a moving vehicle and other non-smoke moving objects. Therefore, an algorithm for detection of fire smoke in a video based on wavelet energy slope fitting is proposed in this paper. The change in wavelet energy of the moving target foreground is used as the basis, and a time window of 40 continuous frames is set to fit the wavelet energy slope of the suspected area in every 20 frames, thus establishing a wavelet-energy-based smoke judgment criterion. The experimental data show that the algorithm described in this paper not only can detect smoke more quickly and more accurately, but also can effectively avoid the distraction of cloud, fog and moving object and prevent false alarm.

An Adaptive Person/Vehicle Detection Algorithm for PIR Sensor (적외선 센서 기반의 사람/차량 탐지 적응 알고리즘)

  • Kim, Young-Man;Park, Jang-Ho;Kim, Li-Hyung;Park, Hong-Jae
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.8
    • /
    • pp.577-581
    • /
    • 2009
  • Recently, various new services based on ubiquitous computing and networking have been developed. In this paper, we contrive Adaptive PIR(Pyroelectric Infrared Radiation) Detection Algorithm (APIDA), a PIR-sensor based digital signal processing algorithm, that detects the movement of an invading object by the recognition of heat change in the detection area, since the object like person or car emits heat(i.e., infrared radition), We devised APIDA as a highly reliable signal processing algorithm that increases the successful detection rate and decreases the false alarm rate in the intruding object detection. According to performance evaluation experiment, APIDA shows the successful detection rate of 90% and low false alarm in the plain area.

Feature Extraction for Scene Change Detection in an MPEG Video Sequence (장면 전환 검출을 위한 MPEG 비디오 시퀀스로부터 특징 요소 추출)

  • 최윤석;곽영경;고성제
    • Journal of Broadcast Engineering
    • /
    • v.3 no.2
    • /
    • pp.127-137
    • /
    • 1998
  • In this paper, we propose the method of extracting edge information from MPEG video sequences for the detection of scene changes. In a the proposed method, five significant AC coefficients of each MPEG block are utilized to obtain edge images from the MPEG video. AC edge images obtained by the proposed scheme not only produce better object boundary information than conventional methods using only DC coefficients, but also can reduce the boundary effects produced by DC-based. Since the AC edge image contains the content information of each frame, it can be effectively utilized for the detection of scene change as well as the content-based video query. Experimental results show that the proposed method can be effectively utilized for the detection of scene changes.

  • PDF

Fast Scene Change Detection Using Macro Block Information and Spatio-temporal Histogram (매크로 블록 정보와 시공간 히스토그램을 이용한 빠른 장면전환검출)

  • Jin, Ju-Kyong;Cho, Ju-Hee;Jeong, Jae-Hyup;Jeong, Dong-Suk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.141-148
    • /
    • 2011
  • Most of the previous works on scene change detection algorithm focus on the detection of abrupt rather than gradual changes. In general, gradual scene change detection algorithms require heavy computation. Some of those approaches don't consider the error factors such as flashlights, camera or object movements, and special effects. Many scenes change detection algorithms based on the histogram show better performances than other approaches, but they have computation load problem. In this paper, we proposed a scene change detection algorithm with fast and accurate performance using the vertical and horizontal blocked slice images and their macro block informations. We apply graph cut partitioning algorithm for clustering and partitioning of video sequence using generated spatio-temporal histogram. When making spatio-temporal histogram, we only use the central block on vertical and horizontal direction for performance improvement. To detect camera and object movement as well as various special effects accurately, we utilize the motion vector and type information of the macro block.

The Change Detection from High-resolution Satellite Imagery Using Floating Window Method (이동창 방식에 의한 고해상도 위성영상에서의 변화탐지)

  • Im, Yeong-Jae;Ye, Cheol-Su;Kim, Gyeong-Ok
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.117-122
    • /
    • 2002
  • Change detection is a useful technology that can be applied to various fields, taking temporal change information with the comparison and analysis among multi-temporal satellite images. Especially, change detection that utilizes high-resolution satellite imagery can be implemented to extract useful change information for many purposes, such as the environmental inspection, the circumstantial analysis of disaster damage, the inspection of illegal building, and the military use, which cannot be achieved by lower middle-resolution satellite imagery. However, because of the special characteristics that result from high-resolution satellite imagery, it cannot use a pixel-based method that is used for low-resolution satellite imagery. Therefore, it must be used a feature-based algorithm based on the geographical and morphological feature. This paper presents the system that builds the change map by digitizing the boundary of the changed object. In this system, we can make the change map using manual or semi-automatic digitizing through the user interface implemented with a floating window that enables to detect the sign of the change, such as the construction or dismantlement, more efficiently.

  • PDF

Real-Time Object Tracking Algorithm based on Pattern Classification in Surveillance Networks (서베일런스 네트워크에서 패턴인식 기반의 실시간 객체 추적 알고리즘)

  • Kang, Sung-Kwan;Chun, Sang-Hun
    • Journal of Digital Convergence
    • /
    • v.14 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • This paper proposes algorithm to reduce the computing time in a neural network that reduces transmission of data for tracking mobile objects in surveillance networks in terms of detection and communication load. Object Detection can be defined as follows : Given image sequence, which can forom a digitalized image, the goal of object detection is to determine whether or not there is any object in the image, and if present, returns its location, direction, size, and so on. But object in an given image is considerably difficult because location, size, light conditions, obstacle and so on change the overall appearance of objects, thereby making it difficult to detect them rapidly and exactly. Therefore, this paper proposes fast and exact object detection which overcomes some restrictions by using neural network. Proposed system can be object detection irrelevant to obstacle, background and pose rapidly. And neural network calculation time is decreased by reducing input vector size of neural network. Principle Component Analysis can reduce the dimension of data. In the video input in real time from a CCTV was experimented and in case of color segment, the result shows different success rate depending on camera settings. Experimental results show proposed method attains 30% higher recognition performance than the conventional method.

Robust Object Detection Algorithm Using Spatial Gradient Information (SG 정보를 이용한 강인한 물체 추출 알고리즘)

  • Joo, Young-Hoon;Kim, Se-Jin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.3
    • /
    • pp.422-428
    • /
    • 2008
  • In this paper, we propose the robust object detection algorithm with spatial gradient information. To do this, first, we eliminate error values that appear due to complex environment and various illumination change by using prior methods based on hue and intensity from the input video and background. Visible shadows are eliminated from the foreground by using an RGB color model and a qualified RGB color model. And unnecessary values are eliminated by using the HSI color model. The background is removed completely from the foreground leaving a silhouette to be restored using spatial gradient and HSI color model. Finally, we validate the applicability of the proposed method using various indoor and outdoor conditions in a complex environments.

Semi-Supervised Domain Adaptation on LiDAR 3D Object Detection with Self-Training and Knowledge Distillation (자가학습과 지식증류 방법을 활용한 LiDAR 3차원 물체 탐지에서의 준지도 도메인 적응)

  • Jungwan Woo;Jaeyeul Kim;Sunghoon Im
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.346-351
    • /
    • 2023
  • With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.

Real-time Moving Object Recognition and Tracking Using The Wavelet-based Neural Network and Invariant Moments (웨이블릿 기반의 신경망과 불변 모멘트를 이용한 실시간 이동물체 인식 및 추적 방법)

  • Kim, Jong-Bae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.4
    • /
    • pp.10-21
    • /
    • 2008
  • The present paper propose a real-time moving object recognition and tracking method using the wavelet-based neural network and invariant moments. Candidate moving region detection phase which is the first step of the proposed method detects the candidate regions where a pixel value changes occur due to object movement based on the difference image analysis between continued two image frames. The object recognition phase which is second step of proposed method recognizes the vehicle regions from the detected candidate regions using wavelet neurual-network. From object tracking Phase which is third step the recognized vehicle regions tracks using matching methods of wavelet invariant moments bases to recognized object. To detect a moving object from image sequence the candidate regions detection phase uses an adaptive thresholding method between previous image and current image as result it was robust surroundings environmental change and moving object detections were possible. And by using wavelet features to recognize and tracking of vehicle, the proposed method decrease calculation time and not only it will be able to minimize the effect in compliance with noise of road image, vehicle recognition accuracy became improved. The result which it experiments from the image which it acquires from the general road image sequence and vehicle detection rate is 92.8%, the computing time per frame is 0.24 seconds. The proposed method can be efficiently apply to a real-time intelligence road traffic surveillance system.

Tree-Based Static/Dynamic Image Mosaicing (트리 기반 정적/동적 영상 모자이크)

  • Kang, Oh-hyung;Rhee, Yang-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.4
    • /
    • pp.758-766
    • /
    • 2003
  • This paper proposes a tree-based hierarchical image mosaicing system using camera and object parameters for efficient video database construction. Gray level histogram difference and average intensity difference are proposed for scene change detection of input video. Camera parameter measured by utilizing least sum of square difference and affine model, and difference image is used for similarity measure of two input images. Also, dynamic objects are searched by through macro block setting and extracted by using region splitting and 4-split detection methods. Dynamic trajectory evaluation function is used for expression of dynamic objects, and blurring is performed for construction of soft and slow mosaic image.