• Title/Summary/Keyword: Object visualization

Search Result 255, Processing Time 0.023 seconds

Tracing Facility for Visualization system of Distributed Java Object Application

  • Lee, Dong-Woo;R.S. Ramakrishna
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1999.10c
    • /
    • pp.783-785
    • /
    • 1999
  • Distributed Object Systems are very complex. So, it is difficult to see overall relationship among objects participated in the system. Moreover the performance tuning or maintenance are also important issues of it. So, it needs a way to view the system with low-cost and an efficient method. One of solutions is a visualization tool or system. In this paper, we proposed a tracing facility for Java-based distributed object system, especially RM(Remote Method Invocation). Our up-coming visualization system will use two phase hybrid post-mortem/on-the-fly technique. To support it, the fundamental tracing part must have some flexible and dynamic mechanism. The main idea of our tracing technique is the Plug-in Sensor Model(PSM). The relationship between tracing (monitoring) part and visualization part is closely related. So, we considered the appropriate factors for visualization. We developed 'Traced RMI(TRMI)'. For more precise visualization of a working system, the casuality of events has to be preserved. TRMI can support global event ordering.

  • PDF

Measurement of Temperature Field using Holographic and Speckle Visualization Techniques (홀로그래피/스페클 가시화를 이용한 온도분포 측정)

  • 백성훈;박승규;김철중
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.371-374
    • /
    • 1995
  • The real-time holographic interferometer with a digital high-speed camera is applied to the visualization of transient temperature field. Collimated and diffused laser beams are used to the object beam according to the shape and transmittance of the phase object. Also, ESPI(Electronic Speckle Speckle Pattern Interferometer) technique is used to the visualization and quantitatie measurement of slow-varying temperature field. The experimental results obtained form these two techniques are discussed.

  • PDF

A Study on Object-Oriented Programming Education using Visualization Method (시각화방법을 이용한 객체지향프로그래밍 교육에 관한 연구)

  • Shin, Woochang
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.5
    • /
    • pp.557-565
    • /
    • 2017
  • In the era of the Fourth Industrial Revolution, programming education is becoming more important. However, it takes a lot of time and practice for students to acquire programming skills. In particular, students find it more difficult to learn object-oriented languages such as JAVA and C++, which are widely used in the industrial field. In this paper, we propose a visualization method of object interaction that can help to educate the concept of object-oriented programming, understand functions, and improve source code analysis and understanding. The proposed visualization method automatically changes the existing source code and visualizes the operation of the objects simultaneously with the execution of the program.

Development of a Post-Processing Program for Flow Analysis Based on the Object-Oriented Programming Concept (OOP 개념에 기초한 유동해석용 후처리 프로그램 개발)

  • Myong, Hyon-Kook;Ahn, Jong-Ki
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.62-69
    • /
    • 2008
  • A post-processing program based on the OOP(Object-Oriented Programming) concept has been developed for flow visualization of the flow analysis code(PowerCFD) using unstructured cell-centered method. User-friendly GUI(GTaphic User Interface) has been built on the base of MFC(Microsoft Foundation Class). The program is organized as modules by classes including those based on VTK(Visualization ToolKit)-library, and these classes are made to function through inheritance and cooperation which is an important and valuable OOP concept. The major functions of this post-processor program are introduced and demonstrated, which include mesh plot, contour plot, vector plot, surface plots, cut plot, clip plot, xy-plot and streamline plot as well as view manipulation (translation, rotation, scaling etc).

DEVELOPMENT OF A POST-PROCESSING PROGRAM FOR VISUALIZATION OF MRI DATA (MRI Data 가시화용 후처리 프로그램 개발)

  • Myong, H.K.;Choi, H.H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.67-72
    • /
    • 2007
  • A post-processing program based on the OOP(Object-Oriented Programming) concept has been developed for visualization of MRI. User-friendly GUl(Graphic User Interface) has been built on the base of MFC(Microsoft Foundation Class). The program is organized as modules by classes based on VTK-library, and these classes are made to function through inheritance and cooperation which are an important and valuable concept of object-oriented programming. The major functions of this post-processor program are introduced and demonstrated, which include contour plot, surface plots, cut plot and clip plot as well as view manipulation (translation, rotation, scaling etc).

  • PDF

Per-Object Transparency in Visualization of Segmented Volumes (분할된 볼륨의 가시화에서 객체당 투명도)

  • Jeong Dongkyun;Shin Yeong Gil;Lee Cheol-Hi
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.9
    • /
    • pp.1239-1247
    • /
    • 2005
  • Basically, objects are discriminated by transfer functions in volume rendering . However, in some cases objects cannot be discriminated only with transfer functions. In these cases, objects are pre-segmented with other methods, and visualized based on the segmentation information. In this paper we present a way of assigning per-object transparency in visualization of segmented volumes. Semi-transparent rendering is used to effectively give context information about the observed object. Per-object transparency can be used as a very effective visualization tool especially when it is difficult to adjust transfer functions to make the object semi-transparent. We present several interpretations of the meaning of per-object transparency, and corresponding variations of the algorithm. We show that efficient implementations for interactive use are possible, by presenting an implementation using general graphics hardware.

  • PDF

Real-time Simulation Technique for Visual-Haptic Interaction between SPH-based Fluid Media and Soluble Solids (SPH 기반의 유체 및 용해성 강체에 대한 시각-촉각 융합 상호작용 시뮬레이션)

  • Kim, Seokyeol;Park, Jinah
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Interaction between fluid and a rigid object is frequently observed in everyday life. However, it is difficult to simulate their interaction as the medium and the object have different representations. One of the challenging issues arises especially in handling deformation of the object visually as well as rendering haptic feedback. In this paper, we propose a real-time simulation technique for multimodal interaction between particle-based fluids and soluble solids. We have developed the dissolution behavior model of solids, which is discretized based on the idea of smoothed particle hydrodynamics, and the changes in physical properties accompanying dissolution is immediately reflected to the object. The user is allowed to intervene in the simulation environment anytime by manipulating the solid object, where both visual and haptic feedback are delivered to the user on the fly. For immersive visualization, we also adopt the screen space fluid rendering technique which can balance realism and performance.

A Study on Movement Pattern Analysis Through Data Visualization of Moving Objects (이동객체의 데이터 시각화를 통한 이동패턴 분석에 관한 연구)

  • Cho, Jae-Hee;Seo, Il-Jung
    • Journal of Information Technology Services
    • /
    • v.6 no.1
    • /
    • pp.127-140
    • /
    • 2007
  • Due to the development of information technologies and new businesses related to moving objects, the need for the storage and analysis of moving object data is increasing rapidly. Moving object data have a spatiotemporal nature which is different from typical business data. Therefore, different methods of data storage and analysis are required. This paper proposes a multidimensional data model and data visualization to analyze moving object data efficiently and effectively. We expect that decision makers can understand the movement pattern of moving objects more intuitively through the proposed implementation.

Development of 3D Terrain Visualization for Navigation Simulation using a Unity 3D Development Tool

  • Shin, Il-Sik;Beirami, Mohammadamin;Cho, Seok-Je;Yu, Yung-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.570-576
    • /
    • 2015
  • 3D visualization of navigation simulation is to visualize the environment conditions (e.g. nearby ships, dynamic characteristics, environment, terrain, etc) for any users on ships at sea. Realistic 3D visualization enables the users to be immersed to it and guarantees the reliability of the simulation. In particular, terrain visualization contains many virtual objects, so it is time and cost-intensive for object modelling. This paper proposes a 3D terrain visualization method that can be realized in a short time and with low cost by using the Unity 3D development tool. The 3D terrain visualization system requires bathymetric and elevation terrains, and Aids to Navigations (AtoNs) to be realized. It also needs to include 3D visualization objects including bridges, buildings and port facilities for more accurate simulation. Bathymetric and AtoN elements are acquired from ENC, and the elevation element is acquired from SRTM v4.1 digital elevation chart database developed by NASA. Then, the bathymetric and elevation terrains are generated, and the satellite images are superposed by using this terrain information. The longitudinal and latitudinal information of the AtoNs are converted to the 3-axis information to position the AtoN locations. The 3D objects such as bridges, buildings and port facilities are generated and the terrain visualization is completed. The proposed method realizes more realistic 3D terrain visualization of Busan Port.

Graphic Hardware Based Visualization of Three Dimensional Object Boundaries in Volume Data Set Using Three Dimensional Textures (그래픽 하드웨어기반의 3차원 질감을 사용한 볼륨 데이터의 3차원 객체 경계 가시화)

  • Kim, Hong-Jae;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.5
    • /
    • pp.623-632
    • /
    • 2008
  • In this paper, we used the color transfer function and the opacity transfer function for the internal 3D object visualization of an image volume data. In transfer function, creating values of between boundaries generally is ambiguous. We concentrated to extract boundary features for segmenting the visual volume rendering objects. Consequently we extracted an image gradient feature in spatial domain and created a multi-dimensional transfer function according to the GPU efficient improvement. Finally using these functions we obtained a good research result as an implementing object boundary visualization of the graphic hardware based 3D texture mapping.

  • PDF