• Title/Summary/Keyword: Object precision method

Search Result 369, Processing Time 0.026 seconds

Obtaining Shapes of Specular Objects Using Ring Illumination (링 조명에 의한 경면 반사 물체의 형상 인식)

  • Kim, J.H.;Kim, C.H.;Cho, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.78-87
    • /
    • 1995
  • Specular reflection appears with metals, plastics, glasses and many other solid objects which are required to be inspected, assembled, moved, or processed automatically. Recongnizing such shiny objects with specular reflections is a hard problem for computer vision, since specular reflections appear, disappear, or change their shapes abruptly, due to tiny movements of the view. Traditionally, such specular reflections are discarded as annoying noise for recongnition purposes. In this paper a technique is represented for obtaining shapes of specular objects. The ring illumin- ation system employes a ring source which is positioned on the axis of the camera. The concept of the proposed method is that if specular objects are illuminated by the ring they show their own dis- tinctive specularity features in surface from which we can infer the shape of the object. A series of experiments are performed to evaluate the performance of this system.

  • PDF

The Analysis on the Error of Diverging Beam and Cylindrical Surface in Holographic Interferometer for Measuring out-of-plane Displacement. (면외변위 측정을 위한 홀로그래피 간섭게에서 발산빔과 원통표면에 대한 오차해석)

  • Kang, Young-June;Moon, Sang-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.128-134
    • /
    • 1997
  • Holographic interferometry is a useful whole-field nondestructive tesing method for measuring deformations and vibrations of engineering structure. In practical way most holographic interferometer uses a diverging beam, a point light source. When an oject is relatively small, the optical arrangement using a collimated light source has no difficulty technically but for a large object the collimated beam connot be applied anymore practically. In this paper we calculate the error of measured displacement from the sensi- tivity vector dominated by the geometry of optical arrangement for holographic interferometer and show the result with 2-D plots. A plane surface and a cylindrical surface were chosen as objects to be measured and the results from the cases of a diverging and a collimated beams were compared and analyzed.

  • PDF

Segmentation-Based Depth Map Adjustment for Improved Grasping Pose Detection (물체 파지점 검출 향상을 위한 분할 기반 깊이 지도 조정)

  • Hyunsoo Shin;Muhammad Raheel Afzal;Sungon Lee
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.16-22
    • /
    • 2024
  • Robotic grasping in unstructured environments poses a significant challenge, demanding precise estimation of gripping positions for diverse and unknown objects. Generative Grasping Convolution Neural Network (GG-CNN) can estimate the position and direction that can be gripped by a robot gripper for an unknown object based on a three-dimensional depth map. Since GG-CNN uses only a depth map as an input, the precision of the depth map is the most critical factor affecting the result. To address the challenge of depth map precision, we integrate the Segment Anything Model renowned for its robust zero-shot performance across various segmentation tasks. We adjust the components corresponding to the segmented areas in the depth map aligned through external calibration. The proposed method was validated on the Cornell dataset and SurgicalKit dataset. Quantitative analysis compared to existing methods showed a 49.8% improvement with the dataset including surgical instruments. The results highlight the practical importance of our approach, especially in scenarios involving thin and metallic objects.

Developement of Detection system of buried Underground Utilities using Magnetic Sensor (자기 센서를 이용한 지하 매설물 탐지 시스템 개발)

  • Cheon Y.S.;Lee J.Y.;Cho C.H.;Ahn K.T.;Yang S.Y.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1819-1823
    • /
    • 2005
  • Incorrect information on public sites can cause serious problem. One of relevant countermeasures against this problem is to detect of buried underground utilities in real time. Although there have been several method to detect of buried underground utilities, such as investigating of gravity and elastic wave and electric field, they have not been so efficient tools. Because it is too expensive and difficult to use. In this paper, magnetic sensors which could provide an easier and more efficient method are used to detect of buried underground utilities. Also fluxgate method of self detection are used. Input signal is used $1\~10kHz$ frequency. Filtering and signal processing of output signal are used labview software. After experiment, detection system of buried underground utilities which used magnetic shows possibility of precise detecting of laying object based on theorectical analysis for electromagnetic field.

  • PDF

Proposal and Theoretical Verification on Motion Error Analysis Method of Hydrostatic Tables Using Transfer Function (전달함수을 이용한 유정압테이블 운동정밀도 해석법의 제안 및 이론적 검증)

  • Park, Chun-Hong;Oh, Yoon-Jin;Lee, Chan-Hong;Hong, Joon-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.56-63
    • /
    • 2002
  • A new model utilizing a transfer function is introduced in the present paper for analizing motion errors of hydrostatic tables. Relationship between film reaction force in a single hydrostatic pad and form error of a guide rail is derived at various spacial frequencies by finite element analysis, and it is expressed as a transfer function. This transfer function clarifies so called averaging effect of the oil film quantitively. For example, it is found that the amplitide of the film reaction farce is reduced as the spacial frequency increases or relative width of the pocket is reduced. Motion errors of a multiple pad table is estimated from transfer function, geomatric relationship between each pads and form errors of a guide rail, which is named as Transfer Function Method(TFM). Calculated motion errors by TFM show good agreement with motion errors calculated by Multi Pad Method, which is considered entire table as an analysis object. From the results, it is confirmed that the proposed TFM is very effective to analyze the motion errors of hydrostatic tables.

Pitting Life Experiments of Gear Material using a Damaged Area Analysis Method (피팅 파손면적분석기법을 이용한 기어재의 피팅 수명 실험)

  • Joo, Jin-Wook;Lee, Byung-Wook;Moon, Seok-Man;Kim, Tae-Wan;Cho, Yong-Joo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.11
    • /
    • pp.92-97
    • /
    • 2010
  • The object of this study is to investigate the definite method for pitting damaged surfaces. Pitting is a sort of fatigue damages and it is made by a repetitive load. For a judgment between damages or not, sensing vibrations of test equipment is simple. However, it is not only difficult to observe a growth of pitting but also impossible to detect the juncture of initial pitting. Therefore, a method for the pitting damaged area measuring technique was effectively implemented by Two Roller Machine. The change of surface damaged area was measured by an optical microscope in regular time and calculated by the use of dark and bright ratio of test specimens' pictures taken by optical microscope. In conclusion, S - N Curves gained by Failure rate - Cycle graph was led and the curves are able to be chosen as occasion demands for a failure area percentage.

Nonlinear Diffusion and Structure Tensor Based Segmentation of Valid Measurement Region from Interference Fringe Patterns on Gear Systems

  • Wang, Xian;Fang, Suping;Zhu, Xindong;Ji, Jing;Yang, Pengcheng;Komori, Masaharu;Kubo, Aizoh
    • Current Optics and Photonics
    • /
    • v.1 no.6
    • /
    • pp.587-597
    • /
    • 2017
  • The extraction of the valid measurement region from the interference fringe pattern is a significant step when measuring gear tooth flank form deviation with grazing incidence interferometry, which will affect the measurement accuracy. In order to overcome the drawback of the conventionally used method in which the object image pattern must be captured, an improved segmentation approach is proposed in this paper. The interference fringe patterns feature, which is smoothed by the nonlinear diffusion, would be extracted by the structure tensor first. And then they are incorporated into the vector-valued Chan-Vese model to extract the valid measurement region. This method is verified in a variety of interference fringe patterns, and the segmentation results show its feasibility and accuracy.

3D Shape Reconstruction from 2D Cross-Sections (단면 정보를 이용한 형상의 재구성)

  • Park, H.J.;Kim, K.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.81-93
    • /
    • 1993
  • The three dimensional(3D) shape reconstruction from two dimensional(2D) cross-sections can be completed through three main phases : the input compilation, the triangular grid formation, and the smooth surface construction. In the input compilation phase, the cross-sections are analyzed to exctract the input data required for the shape reconstruction. This data includes the number of polygonized contours per cross-section and the vertices defining each polygonized contour. In the triangular grid formation phase, a triangular grid, leading to a polyhedral approximations, is constructed by extracting all the information concerning contour links between two adjacent cross- sections and then performing the appropriate triangulation procedure for each contour link. In the smooth surface construction phase, a smooth composite surface interpolating all vertices on the triangular grid is constructed. Both the smooth surface and the polyhedral approximation can be used as reconstructed models of the object. This paper proposes a new method for reconstructing the geometric model of a 3D objdect from a sequence of planar contours representing 2D cross-sections of the objdect. The method includes the triangular grid formation algorithms for contour closing, one-to-one branching, and one-to-many braanching, and many-to-many branching. The shape reconstruction method has been implemented on a SUN workstation in C.

  • PDF

A Study on Shape Measurement by Using Electronic Speckle Pattern Interferometry (전자 스페클 패턴 간섭법을 이용한 형상 측정에 관한 연구)

  • 강영준;김계성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.10
    • /
    • pp.156-164
    • /
    • 1998
  • Electronic Speckle Pattern Interferometry(ESPI) has been used to measure surface deformations of engineering components and materials in industrial areas. ESPI, a non-contact and non-destructive technique, is capable of providing full-field results with high spatial resolution and high speed. One of the important application using electronic speckle pattern interferometry is electronic speckle contouring of a diffused object for 3-D shape analysis and topography measurement. Generally the electronic speckle contouring is suitable for providing measurement range from millimeters to several centimeters. In this study, we introduce the contouring method by modified dual-beam speckle pattern interferometer and the shift of the two illumination beams through optical fiber in order to obtain the contour fringe patterns. We also describe formation process of depth contour fringes and grid contour fringes by shifting direction of the two illumination beams. Before the experiments, we performed the geometric analysis for dual-beam-shifted ESPI contouring, and then, the electronic speckle contouring experiment with various specimens. For quantitative analysis of the contour fringes, we used 4-frame phase shifting method with PZT Finally, good agreement between the geometric analysis and experimetal results is obtained.

  • PDF

Optimal Design of High-Capacity Column-Type Load Cell Using Response Surface Method (반응표면법을 이용한 고하중 기둥형 로드셀의 치적설계)

  • 이태현;이태희;변철웅;박준구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.754-758
    • /
    • 2002
  • According to the enlargement of production facilities and structures, the requirements of high-capacity load cells are increased for monitoring the process conditions in many fields. Generally, however, the accuracy of the column-type high-capacity load cells is not enough due to the geometric nonlinearity. It is supposed to result from the fact that the whole spring element is under high-level stress for the uniform strain field. In this paper, a new shape of spring element is developed which utilizes the stress concentration. As a design criterion, an object function which quantifies the degree of nonlinearity is defined and optimized by use of response surface modeling. As a result, the weight of the spring element is reduced shout 50% in comparison to the conventional shape. The bonding positions of stain gages are found. which show theoretically zero geometrical nonlinearity, while the ratio of overload protection is reduced from 130% to 125% Also it is shown that the response surface method is very efficient in the optimization approach by use of FEM.

  • PDF