• Title/Summary/Keyword: Object oriented classification

Search Result 86, Processing Time 0.032 seconds

Object-oriented Classification and QuickBird Multi-spectral Imagery in Forest Density Mapping

  • Jayakumar, S.;Ramachandran, A.;Lee, Jung-Bin;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.3
    • /
    • pp.153-160
    • /
    • 2007
  • Forest cover density studies using high resolution satellite data and object oriented classification are limited in India. This article focuses on the potential use of QuickBird satellite data and object oriented classification in forest density mapping. In this study, the high-resolution satellite data was classified based on NDVI/pixel based and object oriented classification methods and results were compared. The QuickBird satellite data was found to be suitable in forest density mapping. Object oriented classification was superior than the NDVI/pixel based classification. The Object oriented classification method classified all the density classes of forest (dense, open, degraded and bare soil) with higher producer and user accuracies and with more kappa statistics value compared to pixel based method. The overall classification accuracy and Kappa statistics values of the object oriented classification were 83.33% and 0.77 respectively, which were higher than the pixel based classification (68%, 0.56 respectively). According to the Z statistics, the results of these two classifications were significantly different at 95% confidence level.

Object oriented classification using Landsat images

  • Yoon, Geun-Won;Cho, Seong-Ik;Jeong, Soo;Park, Jong-Hyun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.204-206
    • /
    • 2003
  • In order to utilize remote sensed images effectively, a lot of image classification methods are suggested for many years. But, the accuracy of traditional methods based on pixel-based classification is not high in general. In this study, object oriented classification based on image segmentation is used to classify Landsat images. A necessary prerequisite for object oriented image classification is successful image segmentation. Object oriented image classification, which is based on fuzzy logic, allows the integration of a broad spectrum of different object features, such as spectral values , shape and texture. Landsat images are divided into urban, agriculture, forest, grassland, wetland, barren and water in sochon-gun, Chungcheongnam-do using object oriented classification algorithms in this paper. Preliminary results will help to perform an automatic image classification in the future.

  • PDF

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

Extraction of paddy field in Jaeryeong, North Korea by object-oriented classification with RapidEye NDVI imagery (RapidEye 위성영상의 시계열 NDVI 및 객체기반 분류를 이용한 북한 재령군의 논벼 재배지역 추출 기법 연구)

  • Lee, Sang-Hyun;Oh, Yun-Gyeong;Park, Na-Young;Lee, Sung Hack;Choi, Jin-Yong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.3
    • /
    • pp.55-64
    • /
    • 2014
  • While utilizing high resolution satellite image for land use classification has been popularized, object-oriented classification has been adapted as an affordable classification method rather than conventional statistical classification. The aim of this study is to extract the paddy field area using object-oriented classification with time series NDVI from high-resolution satellite images, and the RapidEye satellite images of Jaeryung-gun in North Korea were used. For the implementation of object-oriented classification, creating objects by setting of scale and color factors was conducted, then 3 different land use categories including paddy field, forest and water bodies were extracted from the objects applying the variation of time-series NDVI. The unclassified objects which were not involved into the previous extraction classified into 6 categories using unsupervised classification by clustering analysis. Finally, the unsuitable paddy field area were assorted from the topographic factors such as elevation and slope. As the results, about 33.6 % of the total area (32313.1 ha) were classified to the paddy field (10847.9 ha) and 851.0 ha was classified to the unsuitable paddy field based on the topographic factors. The user accuracy of paddy field classification was calculated to 83.3 %, and among those, about 60.0 % of total paddy fields were classified from the time-series NDVI before the unsupervised classification. Other land covers were classified as to upland(5255.2 ha), forest (10961.0 ha), residential area and bare land (3309.6 ha), and lake and river (1784.4 ha) from this object-oriented classification.

Object-oriented Information Extraction and Application in High-resolution Remote Sensing Image

  • WEI Wenxia;Ma Ainai;Chen Xunwan
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.125-127
    • /
    • 2004
  • High-resolution satellite images offer abundance information of the earth surface for remote sensing applications. The information includes geometry, texture and attribute characteristic. The pixel-based image classification can't satisfy high-resolution satellite image's classification precision and produce large data redundancy. Object-oriented information extraction not only depends on spectrum character, but also use geometry and structure information. It can provide an accessible and truly revolutionary approach. Using Beijing Spot 5 high-resolution image and object-oriented classification with the eCognition software, we accomplish the cultures' precise classification. The test areas have five culture types including water, vegetation, road, building and bare lands. We use nearest neighbor classification and appraise the overall classification accuracy. The average of five species reaches 0.90. All of maximum is 1. The standard deviation is less than 0.11. The overall accuracy can reach $95.47\%.$ This method offers a new technology for high-resolution satellite images' available applications in remote sensing culture classification.

  • PDF

An Object Oriented Approach for Multi-Channel and Multi-Polarization NASA/JPL POLSAR Image Classification

  • Tsay, Jaan-Rong;Lin, Chia-Chu
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.363-365
    • /
    • 2003
  • This paper presents an object oriented approach(OOA) for classification of multi-channel and multi-polarization NASA/JPL POLSAR images. Some test results in Taiwan are also given and analyzed. It is concluded that this approach can utilize as more information of both low- and high-levels involved in all images as possible for image classification and thus provides a better classification accuracy. For instance, the OOA has a better overall classification accuracy(98.27%) than the nearest-neighbor classifier(91.31%) and minimum-distance classifier(80.52%).

  • PDF

Object-oriented Classification of Urban Areas Using Lidar and Aerial Images

  • Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.3
    • /
    • pp.173-179
    • /
    • 2015
  • In this paper, object-based classification of urban areas based on a combination of information from lidar and aerial images is introduced. High resolution images are frequently used in automatic classification, making use of the spectral characteristics of the features under study. However, in urban areas, pixel-based classification can be difficult since building colors differ and the shadows of buildings can obscure building segmentation. Therefore, if the boundaries of buildings can be extracted from lidar, this information could improve the accuracy of urban area classifications. In the data processing stage, lidar data and the aerial image are co-registered into the same coordinate system, and a local maxima filter is used for the building segmentation of lidar data, which are then converted into an image containing only building information. Then, multiresolution segmentation is achieved using a scale parameter, and a color and shape factor; a compactness factor and a layer weight are implemented for the classification using a class hierarchy. Results indicate that lidar can provide useful additional data when combined with high resolution images in the object-oriented hierarchical classification of urban areas.

Rule set of object-oriented classification using Landsat imagery in Donganh, Hanoi, Vietnam

  • Thu, Trinh Thi Hoai;Lan, Pham Thi;Ai, Tong Thi Huyen
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.521-527
    • /
    • 2013
  • Rule set is an important step which impacts significantly on accuracy of object-oriented classification result. Therefore, this paper proposes a rule set to extract land cover from Landsat Thematic Mapper (TM) imagery acquired in Donganh, Hanoi, Vietnam. The rules were generated to distinguish five classes, namely river, pond, residential areas, vegetation and paddy. These classes were classified not only based on spectral characteristics of features, but also indices of water, soil, vegetation, and urban. The study selected five indices, including largest difference index max.diff; length/width; hue, saturation and intensity (HSI); normalized difference vegetation index (NDVI) and ratio vegetation index (RVI) based on membership functions of objects. Overall accuracy of classification result is 0.84% as the rule set is used in classification process.

A Study on Efficient Classification of Pattern Using Object Oriented Relationship between Design Patterns

  • Kim Gui-Jung;Han Jung-Soo
    • International Journal of Contents
    • /
    • v.2 no.3
    • /
    • pp.11-17
    • /
    • 2006
  • The Clustering is representative method of components classification. The previous clustering methods that use cohesion and coupling cannot be effective because design pattern has focused on relation between classes. In this paper, we classified design patterns with features of object-oriented relationship. The result is that classification by clustering showed higher precision than classification by facet. It is effective that design patterns are classified by automatic clustering algorithm. When patterns are retrieved in classification of design patterns, we can use to compare them because similar pattern is saved to same category. Also we can manage repository efficiently because of storing patterns with link information.

  • PDF

An Object Classification Algorithm Based on Histogram of Oriented Gradients and Multiclass AdaBoost

  • Yun, Anastasiya;Lenskiy, Artem;Lee, Jong Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.83-89
    • /
    • 2008
  • This paper introduces a visual object classification algorithm based on statistical information. Objects are characterized through the Histogram of Oriented Gradients (HOG) method and classification is performed using Multiclass AdaBoost. Salient features of an object's appearance are detected by HOG blocks Blocks of different sizes are tested to define the most suitable configuration. To select the most informative blocks for classification a multiclass AdaBoostSVM algorithm is applied. The proposed method has a high speed processing and classification rate. Results of the evaluation based on example of hand gesture recognition are presented.

  • PDF