A Study on Efficient Classification of Pattern Using Object Oriented Relationship between Design Patterns 11

A Study on Efficient Classification of Pattern Using Object Oriented
Relationship between Design Patterns

Gui-Jung Kim
Department of Biomedical Engineering,
KonYang University, Nonsan, Korea

Jung-Soo Han
Division of Information & Communication,
BaekSeok University, Cheonan, Korea

ABSTRACT

The Clustering is representative method of components classification. The previous clustering methods that use cohesion and coupling
cannot be effective because design pattern has focused on relation between classes. In this paper, we classified design patterns with
Sfeatures of object-oriented relationship. The result is that classification by clustering showed higher precision than classification by
Sacet. It is effective that design patterns are classified by automatic clustering algorithm. When patterns are retrieved in classification
of design patterns, we can use to compare them because similar pattern is saved to same category. Also we can manage repository

efficiently because of storing patterns with link information.

Keywords: Design pattern, Clustering Algorithm, Pattern Features, Object Oriented Relationship.

1. INTRODUCTION

In order to use object-oriented methodology, we need
practical concept and standardized pattern, and selection and
application of the right objects in each context. It's design
pattern that is standardized concretely for application to
programming without stopping only by suggesting object
oriented design concept theoretically[1][2][3]. Design pattern is
a solution in realization course to maximize reusability and
modularity, the biggest advantage of object-oriented
methodology. There are hundreds of design patterns announced
and known publicly by PLoP(Pattern Languages of Programs),
design pattern conference in the USA, and Euro Plop in
Europe[4][5]. Efficient management of components is
necessary to improve reusability of these increasing patterns[6].

Existing clustering is mostly done between classes or in
classes, so this kind of clustering has used cohesion and
coupling of class or module[7]. However, this way is not
efficient to cluster design pattern focusing on relation and
structure between classes. Therefore this study suggests pattern
clustering algorithm for clustering design pattern consisted of
relation between classes. Pattern clustering process takes two-
course classification for pattern's quality. In the first course,
pattern is classified by function and in the second course, by
structure. Pattern algorithm is used in classifying with pattern

Corresponding author. E-mail: gikim@konyang.ac.kr
Manuscript received Aug. 18, 2006 ; accepted Sep. 08, 2006

structure. Suggested clustering of design pattern classifies
pattern by pattern clustering algorithm and saves it using link
information of pattern, for this helps us to manage repository
efficiently and redesign system using pattern information.

2. RELATED WORK
2.1 Gamma's Pattern Classification

Gamma classified design pattern into creational pattern,
structural pattern and behavioral pattern according to pattern's
role. Creational pattern, a pattern to provide comprehensive
solution for deciding creation method of objects, suggests
method to organize and capsulate class definition and creation
method of objects. Structural pattern, a pattern giving solution
for method to compose class and objects in much bigger
structure, provides general method to organize them when
objects with different function play a role through cooperation.
Behavioral patter, a pattern used to organize, manage and
combine object's behaviors, is mostly used in algorithm
performance like dividing function between objects [2].

2.2 Facet Classification System of GTE corp.
The system of GTE corp. proposed by Diaz is a

representative reuse system using facet classification method
[8]. This method, by which expansion of components, a weak

12

point of classification method by enumeration was improved,
demonstrates one component with several facets after
compounding component's common quality and expressing one
facet. This method expresses only foundation class of
components, so classification is simple and easy to understand
and expand[9][10]. Query can be corrected or newly asked
using synonym management method for extracting components
with similar function at the time of retrieval failure. However,
there's a limit that it's fixed once classification is designed. It's
difficult to detail their relationship and to deal synonyms when
facet items are increasing. There's another weak point that
retrieval time can be long. Also, facets classification method
that uses the concept of abstract pattern’s quality is very
arbitrary and subjective classification in clustering design
pattern focused on relation and structure between classes.

2.3 Concept Analysis for Pattern Extraction

Concept analysis makes it possible to group objects with
common attributes. In application of concept analysis, object is
a group of class and attribute is relation between classes. The
first view of concept analysis is context - collection of objects,
collection of attributes and binary relation between object to
determine attribute of each object and attribute[11]. Each
relation links binary relation of class couple for application
here. Concept is collection of objects with common attributes.
Namely, it's a group of all objects sharing attributes. In general,
concept is made by (X, Y).

X ={0eO|VaeY;(o,a)e P} (1)
Y={ae A|Voe X ;(0,a)e P})

O is an object. A is attribute. P is binary relation. X is
concept extent. Y is concept intent. The main point for using
concept analysis is that design pattern is concept generally.
Actually, concept is composed of class group sharing relation
in common. This class group is acquired by pattern found in
source code or design while the number of attributes
determines complexity of pattern [12].

3. PATTERN CLUSTERING

Pattern clustering is process to cluster design pattern
efficiently that is increasing in number. UML is essential to
adapt design patterns to design phase easily. But adequate
patterns are not selected because systematic classification and
community of patterns are not accomplished. This problem can
be solved in constructing efficient patterns library. And it is
necessary to provide pattern structure together with pattern
information. Facet method and Gamma method have problems
in classification design patterns efficiently. To reuse a large
number of patterns, Gamma method that retrieves usihg pattern

The Journal of the Korea Contents Association

name only and 3 category classifications according to role of
pattern has trouble in searching and adapting patterns that user
request. Pattern classification that offers suitable experience
automatically is necessary. Also, efficient retrieval method and
detail information of patterns must be provided. Facet method
is difficult to maintain objectivity because facets are set and
classified according to designer’s thinking. Also it is difficult to
grasp class structure and relationship in module because facet
items are presented common features of components. In this
paper we propose pattern clustering algorithm using class
structure of design patterns is made relationship between
classes.

3.1. Pattern Clustering Process

Pattern Clustering Process is taken with two stages in Fig.1.
In the first stage, functional classification is done by pattern's
role. In the second stage, structural classification is done using
relation between classes of patterns. A user can form user
pattern with class diagram of UML, and then save pattern in
pattern library through clustering process. In clustering using
pattern structure, it's difficult to define as related pattern though
a pattern structure has a part to correspond. Therefore, the stage
of functional classification should be taken before clustering
with pattern structure.

&
o
=
=
.
@
=
pae

Aﬁugiezsmo
deis i

Bugiaisnip

Fig.1. Pattern Clustering

In functional classification stage, pattern is classified into
three kinds according to pattern's role. The pattern giving a
comprehensive method to decide creation way of objects is
classified into creational pattern. The pattern showing a general
method to organize objects is classified into structural pattern.
The pattern doing a role to classify function between objects is
classified into behavioral pattern. In structural classification
stage, clustering is done using pattern's structural form. We
used clustering algorithm for clustering one of three foundation
patterns of Gamma and pattern with the same structure among
added pattern by a user to the same category.

A Study on Efficient Classification of Pattern Using Object Oriented Relationship between Design Patterns 13

3.2. Pattern Clustering Algorithm

Pattern clustering algorithm clusters to the same category
when there's corresponding pattern with added pattern in
foundation patterns. Pattern's structure is expressed with
relation between classes in class diagram of UML. To compare
patter's structure, one pattern is transformed into a group of
order pair.

P={R,(i,/)|G,))e R,ie C, je C,1: k: n} (3

P is patter's order pair. R is relation of class. Proxy pattern in
Fig.2 can be expressed with order pair, P=G(2,1), S(3,2). In
each order pair, an alphabet letter means relation of class
diagram and numbers mean two classes. Table 1 shows
abbreviated words to express relation of class diagram. An
added pattern by a user in Fig.3 can be expressed with order
pair, P=8(1,2), G(1,3), G(4,3), S(5,4), G(6,5), G(7,5). An added
pattern shows expanded proxy pattern. In this pattern,
algorithm to locate proxy pattern is completed by comparing
order pair of two patterns.

<<stereotype>> 1
Subject
{abstract}
+Request() {abstract}

-
<<slereotype>> 2 <<stereotype>>
Real Subject Proxy

realSubject

+Request()

+Request()

{Request() {
realSubject.Request();

Proxy Pattern
= =
P={G(2.1), S(3,2)} h

Fig.2. Proxy pattern's order pair

Table 1. Class Relationship
Relationship
Association
Generalization
Aggregation
Composition
Dependency
Realization

- Symbol

=lolalm ol v

Class1 Class2
1 *
Ciass3
Class4 Ciass§
* *
[45 1
Classé Class7
T
= =

| P=(S(1,2), 6(1,3), G(4,3), $(5.4), G(6.5), G(7,5)) |

Fig.3. Added pattern order pair

Initial Step P; = { Ri=(i, j)) | a—ij, b—j; }
Step 2<k<n
Py = {Rliy, ji) | if ix=i,, then i—a, j—x
ifJy=i), then ig—x, jr—a
1= then —x, j—b
i, then ig—b, jrox }

Fig 4. Pattern order pair transform algorithm

In order to compare foundation pattern expressed by order
pair with an added pattern; first, it's necessary to transform
class expressed by numbers. Fig.4 shows pattern order pair
transformation algorithm. Transformation should be done to
prevent from bringing a different result without comparing each
other whenever order pair changes because it's possible class
number is optional, and compare regardless of changing order.
The transformation process changes the first order pair into any
letters. Here, the first class expressed in order pair is changed
into a, and the second order pair is changed into b. In the rest
order pair, the same number with one of the first class in the
first order pair is changed into a, and the same number with one
of the second class is changed into b. A Class coupling with
class changed in order pair is expressed with x because there's
no important meaning in comparison even though it is
expressed with any number.

P=G(1,3), G(4,3), G(6,5), G(7,5), S(1,2), S(5,4)
=P=G(a.b), G(x.b), G(6,5), G(7,5), S(a.x), S(5,4)

Like above, class of the first order pair is transformed into
(a,b), 1 into a and 3 into b. In other classes, 1 into a , 3 into b,
and class coupling with order pair(a,b) into x because there's no
relation in comparing with any class number.

14

// foundation pattern transformation
P={Py,PpPy... Py} | Transformation algorithms
of Foundation Pattern
// pattern order pair comparison
Jor(i=0, i<n;i++)
{
// additional pattern transformation
Jor comparison
P ={P o, P Pos... paf| Transformation
algorithms of addition Pattern
//if addition pattern include foundation
pattern, save and exit
Py C P, : Break Addition();
//if pattern structure not same,
change order pair
Py — Py, Py— Py
/

Fig 5. Pattern comparison algorithm

In Fig.5, pattern comparison algorithm, P; is foundation
pattern, P, is added pattern after transformation. In order to
compare added pattern with foundation pattern, a user
transforms foundation pattern and added pattern with
transformation algorithm and then compares if these two
patterns is same. To find a pattern related with foundation
pattern among some order pair showing relation of added
pattern, these order pairs are transformed in order. After this
transformation, in order pair satisfies a conditional formula (4)
below, added pattern, P, is clustered into foundation pattern, Py.
If order pair doesn't satisfy a conditional formula (4) even after
transformation of all order pair, added pattern is compared with
other foundation pattern.

P cP, @

Fig.6 is a concrete diagramming of comparison process of
proxy pattern and added pattern. Proxy pattern is composed of
one association relation and one inheritance relation. Proxy
pattern, G(1,3) is transformed to G(a,b) to search for
association relation and inheritance relation of the same pattern
among user patterns. In other order pair, 1 is transformed into a,
3 into b. After transformation, order pair of proxy pattern
becomes G(a,b), S(x,b). A user pattern is compared through
transformation process and has 4 association relations. Among
these relations, to find the one with proxy pattern's structure,
one of them will be compared with order pair transformed from
proxy pattern through transformation process. If there are
order pairs having structure of G(a,b),S(x,b), a user pattern is
clustered to the group of proxy pattern. Otherwise, proxy
pattern and added pattern can't be called the same structure
pattern and comparing will be continued over again.

The Journal of the Korea Contents Association

Gla.b)
Six.a)

G(2.1) \
3

Proxy Pattern transformation

G(1,3) G(1.3) G(1.3)
G(4,3) G(3.4) G(3.4)
G(6.5) G(ab)] | G{x,b)
G(7.5) G(x.b) | | Glab)
S(1,2) 51,21 | 8(1.2
5(5,4) S(b.x) § | S(b,x)
Addition pattern (a) (b) ©) (d)

Fig.6. Pattern comparison process

4. PATTERN REGISTRATION AND MANAGEMENT
4.1 Pattern Information DB

Design pattern information was designed to check
information on pattern at the time of pattern retrieval.
strCargegory is supposed to be marked in the middle of
classifying 3 kinds, creational pattern, structural pattern, and
behavioral pattern by function. docDocument is a field for
explaining pitfall, hint, and technique needed to be recognized
at the time of pattern application. strPart is a foundation pattern
including pattern classified by clustering. UserID is an ID of a
user who creates and registers a pattern. Table 2 demonstrates a
table of pattern information DB.

Table 2. pattern information DB

field - | data type Mean
strName varchar [pattern name
strCartegory | varchar [category by function classification
docDocument text Jdocument for pattern
strPart varchar [pattern classification base
UserID varchar (pattern registration name

4.2 User Interface

A use can create a pattern; register it in pattern library and
search for pattern from pattern DB. Like Fig.7, a pattern is
created using UML diagram on main screen. To register it,
pattern items should be selected on the menu. Pattern items are
composed of pattern registration and pattern DB. If you select
pattern registration item, a dialog box of order pair for
comparing patters is shown, and relation and class is expressed.
One pattern chosen among 3 patterns is saved in pattern library
through pattern clustering proceeding inside. Pattern DB item is

A Study on Efficient Classification of Pattern Using Object Oriented Relationship between Design Patterns 15
used to check result of classification or search for pattern's Table 3. pattern classification
tructure. Like Fig.8, pattern DB sh the result of of)
su . . &S, P . shows you . esult © index pattern #af PC C ¥C¢ iC
classification by clustering. Patterns were classified on the class
basis of 24 Gamma's patterns. The list of patterns clustered 1 [Order/Shipment Pattern | 6 | memento} ¢ |memento | o
among Gamma's pattemns are shown to check pattern's structure. 5 [The Stock Manager 8 |prototype| ¢ |prototype| o
Various patterns can be compared and details of patterns can be analysis Pattern :
informed 3 Rule object 13 | mediator | © | mediator | o
' [PLOP2000]
. . [The Object Filter and
_______ 4 |Access Control Framework 18 | strategy | o | strategy | O
] g 5 : [Legac
N N?n ggn:sds Ve, Aseie M;;e. T & & 5 Wlipp};ng[PLOP%OO] 6 adapter o adapter (8]
. factory
mow 6 imodifier[PLOP2000] 8 | prototype x method | ¥
— FIEmRE T Protocol System ’
£ i :
7 [Architecture 15 | bridge | © proxy | x
/ 8 |[Strategized Concurrency | S state | @ state
. o 9 |Reductor{fPLOP2000] 9 |commandf ¢ |command
et i 10 [Phrasebook Pattern 4 | builder | ¢ | builder
- ugpe cgvdE o e [Two Phase Commit
S 11 PLOP99 7 | decorator | -0 | decorator| o
Mo | [.] T -
12 (Composite Transaction 7 |composite| @& |composite| x
\ [PLOP99] .
13 Matcher-andler{ PLOP99] | 6 | observer | © | observer | o
i 14 lAutherntcator Pattern 5 |prototype| x | Builder | x
15 [|Alternator[PLOP99] 6 state o state o
£ My
= " 16 Mayfly[PLOP99] 10 |interactor | ¢ |interactor| o
. . JACEE architecture)
Fig.7. Pattern main screen 17 [PLOP99] 5 | observer | © ‘ observer | o
18 Abstract Machine 1 abstract o abstract o
[PLOP99] factory factory
QABE A iy S Y] usiE ChighdlRessinsiilly Medeng 3] 19 |Grafcet Pattern[PLOP99] [5 [command| % | interactor| o
Build froduciory ¥, Cominand {Hational =i [Composite I .
F:;m ef; oo Fis = 20 Calls[PLOP99] 10 |composite o _|composite| o
Prototype] ferator Feadng =] - - S
Snten T Weditsios [— 21 Eat.a Filter Architecture 9 proxy @ proxy | o
s S Meriento Fandom v missary .
de et] s Hﬂﬁam = 22 Pattern[PLOPOS] 5 | strategy 0 state X
I3 At b St o+ 23 [Courier[PLOP98] 6 | mediator | o | mediator [o
Brdge: Nefworks 7] Stiategy folfcal 7 :
omomest e Override Current
Campestts ! hd Téthphils [riehgence ~1 24) 5 |command| o |command{ o
Deecdirgtor Obiect 3] Visitar [ovaesls v} Processing
Fazade [Grianed ¥ e sirhesis ¥ 25 Substitution 5 | strate s | strate o
ngsight [Besfan v [Pattern[PLOP98] &y . &Y
Pm*?? mpjﬁ“‘“—ij E A 26 Delegation 4 TOX o | prox o
o z ! Pattern[PLOP9S] ProXy 1.0 | Proxy
27 [Reliable Hybrid Pattern 16 |composite] o |composite| o
Fig.8. Pattern DB 28 [The Dynamic Template 6 | observer | & | observer | o
[Pattern
[Distributed Proxy
29 [PLOP97] 9 proxy 0 proxy | o
5. PERFORMANCE 30 [Virtual Proxy[Larman98] | 6 proxy o proxy | o
C - classification
In this paper, we used 30 patterns announced at the PC - proposed category
PLOP(Pattern Languages of Programs) conference for an FC - facet classification category
efficiency test. We classified 30 patterns by method suggested
in this paper and facet method. Facet method is a method to Table 4. Classified pattern precision
classify facet items after components' common qualities are pattern proposed category | facetclassification eategory
made into several facet items. Precision of suggested method precision 90% 83.33%

was measured checking relationship between classification
result by clustering and real information of patterns.

16

In Table 3, existence of relation was surveyed after
classifying in two ways, suggested method and facet method.
Table 4 shows that precision is about 90% in category of
suggested method and about 83% in facet method. This means
that precision by facet method is lower than one by suggested
method. In facet method, selection of facet items is optional
according to pattern's quality, so there may be difference of
precision according to choice of exact facet items. In pattern
clustering classification, patterns are classified by forms
expanded from foundation pattern, for patterns in the same
category can diminish the size of repository as repeating classes
with only link information on foundation pattern when you try
to save structures of expanded patterns. Table 5 shows the
number of classes saved in repository. Fig.9 is the size
comparison of repository.

Table 5. # of class for pattern repository

Pattern wpository SRS (| T e w e
existing system(# of class) 92 164 235
proposed system(# of class) 48 80 110

300

250

@ 200
©
2 150
[+]
* 100 &

50 o

0 £

10 20 30
of pattern

Fig.9. Comparisons for pattern repository size

Therefore, suggested method in this paper enables UML
modeling, automatic classification by clustering and similar
pattern retrieval in category like retrieval by string matching.

6. CONCLUSION

This paper proposes pattern classification using pattern's
structure for efficient management of pattern. A pattern is
classified into one among 23 categories by pattern clustering
algorithm and then stored when pattern's structure and
information is input. Pattern clustering algorithm is the method
to use class structure of patters. By this method, added pattern
is expressed with order pair and then clustered to one group if
there's corresponding part with foundation pattern. Similar
pattern retrieval is also possible by searching for patterns
classified in category.

Previous clustering method is not efficient, so we propose
pattern clustering algorithm for design pattern classification.
Classification by clustering expressed higher precision than
classification by facet and saved information repository as the
number of repeating classes with only link information at the
time of storing patterns.

The Journal of the Korea Contents Association

From now on, the study of expanded clustering method for
when added pattern by a user includes more than two
foundation patterns is demanded. Research on various methods
that make it possible for a user to add a foundation pattern
when a pattern isn't classified to Gamma's foundation patterns
should also be done.

REFERENCES

[1] http://www.omg.org/

[2] E.Gamma, R.Helm, R.Johnson, and J.Vlissides, "Design
Pattern : Elements of Reusable Object-Oriented Software",
Addison-Wesley, 1995

[3] Jeffrey H. Kingston and Benjamin Yin-Sun Lynn, "A
Software Architecture for Timetable Construction”,
Lecture Notes in Computer Science 2079, 2001, pp.342-
352.

[4] http://hillside.net/plop/

[5] http://hillside.net/europlop/

[6] Gui-Jung Kim, Young-jae Song, "Design Pattern Based
Component Classification and Retrieval using E-SARM",
The KIPS Transactions, vol. 11-D, No.5, Oct. 2004,
pp.1133-1142.

[7] Nicolas Anquetii and timothy «c¢. Lethbridge,
"Experiments with Clustering as a software
Remodularization Method", Proceedings of the 6th
Working Conference on Reverse Engineering, 1999,
pp.235-255.

[8] R.Prieto-Diaz and P.Freeman, "Classifying Software for
Reusability", IEEE Software, Vol.4, No.l1, Jan. 1987,
pp.6-16.

[9] Gui-Jung Kim, Young-jac Song, "Efficient pattern
classification and retrieval supporting design pattern
reuse", Proceeding of the IASTED International
Symposia, Feb. 2001, pp.511-517.

[10] Gui-Jung Kim, Jung-Soo Han, Young-Jae Song, "Efficient
Management of Pattern Information for Similar Design
Pattern Retrieval”, Proceeding of the SNPDO1
International Conference, 2001, pp.444-449.

[11] F.A.Grootjen, and Th.P. van der Weide, "Conceptual
Query Expansion", ICIS report NIII-R0406, Jan. 2004.

[12] Paolo Tonella and Giulio Antoniol, "Object Oriented
Design Pattern Inference”, Proceedings of the IEEE
International Conference on Software Maintenance,
1999, pp.230-238.

A Study on Efficient Classification of Pattern Using Object Oriented Relationship between Design Patterns

Gui-Jung Kim

She received the B.S. degree and the M.S.
degree in computer engineering from
Hannam university, Korea, and the Ph.D.
degree in computer engineering from
Kyunghee university, Korea in 2003.
Since 2001, she has been a professor in
L department of Biomedical Engineering,
Konyang University, Chungnam, Korea. Her main research
interests include CASE and component reuse.

Jung-Soo Han

He received the B.S. degree, the M.S.
degree and the Ph.D. degree in computer
engineering from Kyunghee university,
Korea. Since 2001, he has been a
professor in division of Computer
Science, Baekseok University,
Chungnam, Korea. His main research
interests include component management and CBD.

