• 제목/요약/키워드: Object detecting

검색결과 555건 처리시간 0.027초

방향성 2차원 타원형 필터를 이용한 스테레오 기반 포즈에 강인한 사람 검출 (Stereo-based Robust Human Detection on Pose Variation Using Multiple Oriented 2D Elliptical Filters)

  • 조상호;김태완;김대진
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권10호
    • /
    • pp.600-607
    • /
    • 2008
  • 이 논문은 방향성 2차원 타원형 필터(Multiple Oriented 2D Elliptical Filters;MO2DEFs)를 사용하여 스테레오 영상으로부터 포즈에 강인한 사람 검출을 제안한다. 기존의 물체 지향 크기 적응 필터(Object Oriented Scale Adaptive Filter;OOSAF)는 정면을 보고 있는 사람만을 검출하는 단점을 지니고 있는데 반해 제안한 방향성 2차원 타원형 필터는 사람의 크기나 포즈에 관계없이 사람을 검출하고 추적한다. 2D 공간-깊이 히스토그램에 특정 각도로 향하는 4개의 2차원 타원형 필터들을 적용하고, 필터링 된 히스토그램에서 임계값을 통해서 사람을 검출한 다음, MO2D2EFs 중 승적 결과가 가장 큰 2차원 타원형 필터의 방향을 사람의 방향으로 판단한다. 사람 후보들은 얼굴을 검출하거나 검출된 사람의 선택된 방향의 머리-어께 형태를 정합함으로서 검증한다. 실험 결과는 (1) 포즈 각도 예측의 정확도는 약 88%이고, (2) 제안한 MO2DEFs를 사용한 사람 검출의 성능이 OOSAF를 사용한 사람 검출의 성능보다 $15{\sim}20%$만큼 향상되었으며, 특히 정면이 아닌 사람의 경우에 더 향상이 있었다.

제어 가능한 카메라 환경에서 실시간 관심 보행자 검출 및 추적 (Real-Time Interested Pedestrian Detection and Tracking in Controllable Camera Environment)

  • 이병선;이은주
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.293-297
    • /
    • 2007
  • 본 논문에서는 실시간으로 획득된 칼라 영상에서 CMODE(Correct Multiple Object DEtection)방법을 이용하여 움직이는 다수 물체를 검출하고, 위치 정보와 색상 정보를 이용하여 관심 보행자만을 추적하는 새로운 알고리즘을 제안한다. 다수 물체가 검출되면, 사람의 구조적 특징과 형태 정보를 이용하여 나무의 흔들림이나 차량의 움직임은 제거하고 관심 보행자만을 검출한다. 검출된 관심 보행자 추적을 위한 1차 유사성 판단은 이전 관심 보행자의 무게중심과 현재 관심 보행자의 무게중심간의 거리차를 이용한다. 1차 유사성이 판단된 영역에 대하여 k-평균 알고리즘으로 세 개의 특징점을 구하고, 각 특징점의 $3{\times}3$ 영역에 대한 평균 색상값으로 2차 유사성을 판단하여 추적하도록 한다. 카메라 배율은 원거리의 보행자에 대한 추적을 용이하게 하기 위해서 조정하고, 카메라 시계(FOV: Field of View)는 보행자의 위치가 화면내의 일정 범위에 있지 않을 경우에 조정한다. 실험 결과, 제안한 CMODE 방법이 라벨링 방법보다 평균 접근 횟수가 1/4배정도 덜 접근하였으며, 평균 검출시간도 3배정도 빠르게 검출됨을 확인할 수 있었다. 나무의 흔들림으로 인한 영역이나 차량의 움직임 영역, 그림자 영역과 같이 복잡한 배경에서도 관심 보행자 검출은 평균 96.5%의 높은 검출률을 보였다. 관심 보행자 추적은 위치 정보와 색상 정보를 이용하여 평균 95%의 높은 추적률을 보였으며, 관심 보행자는 카메라 시계와 배율을 조정함으로써 연속적으로 추적할 수 있었다.

  • PDF

차량정차감지 알고리즘을 이용한 탑승자의 효율적 위치추적시스템 (Efficient Tracking System for Passengers with the Detection Algorithm of a Stopping Vehicle)

  • 이병문;신현호;강운구
    • 인터넷정보학회논문지
    • /
    • 제12권6호
    • /
    • pp.73-82
    • /
    • 2011
  • 지금까지의 위치인식 환경은 사람이나 사물 또는 이동체 자체에 대해서만 연구되어 왔다. 그러나 본 연구에서는 주행 중인 차량에 있는 여러 탑승자의 위치를 실시간으로 식별하고 추적하는 서비스에 대한 위치인식 모델을 제안하였다. 탑승자의 위치를 식별하려면 GPS기능이 탑재된 고가형 단말기를 이용하는 경우와 GPS기능이 없는 저가형 소형단말기를 이용하는 경우로 구분할 수 있다. 본 연구에서는 단순한 소형단말기가 GPS를 탑재한 차량용 인터페이스와 센서네트워크로 메시지를 전송하게 함으로써 탑승상황에 따른 효율적인 위치인식을 제공하도록 하였다. 이 기법은 먼저 차량의 상태(정차, 주행)를 감지하고, 주행상태라면 탑승자가 탑승이나 하차를 할 수 없기 때문에 굳이 위치정보를 송수신할 필요가 없어 트래픽을 감소시킬 수 있다. 이것은 전력소모를 줄여 배터리 수명을 늘릴 수 있도록 한다. 이에 본 연구에서는 제안한 차량정차 감지알고리즘을 탑승자 위치추적 시스템으로 구현하여 그 효용성을 확인하기 위해 실험하였다. 또한 설계하여 구현한 시스템을 이용하여 실험한 결과 최대수신거리는 12m로 측정되었으며, 200회의 실험을 통해 탑승인식과 하차인식이 모두 성공했음을 알 수 있었다. 또한 주행인식 측정실험에서는 차량정차 알고리즘을 적용한 경우가 그렇지 않은 경우에 비해서 41.6%의 전송트래픽을 감소시킬 수 있었다.

스플라인 기어부 결함의 와전류검사 신호처리에 관한 연구 (Study on Signal Processing in Eddy Current Testing for Defects in Spline Gear)

  • 이재호;박태성;박익근
    • 비파괴검사학회지
    • /
    • 제36권3호
    • /
    • pp.195-201
    • /
    • 2016
  • 금속성부품의 자동화 생산라인 상에서 결함검사는 통상 시스템 가격이 합리적이고 고속검사가 가능한 와전류검사(ECT, eddy current testing) 기법이 많이 사용된다. 이러한 금속성 피검사체 가운데 특별히 스플라인 샤프트(spline shaft)의 스플라인 기어부(spline gear)와 같이 표면이 고르지 못한 피검사 대상에 대하여 ECT검사를 적용할 경우 주파수 분포도가 유사하면서 동시에 상대적으로 큰 표면신호로 인해 센서로부터 획득한 원신호와 결함에 의해 발생한 신호를 분리해내기가 어렵다. 이러한 스플라인 기어부의 결함신호 검출을 용이하게 하기 위해서는 주변 잡음신호에서 결함신호만을 구분해낼 수 있는 고차필터의 구현이 필수적이고 동시에 각 생산라인과 피검사체의 상황에 따라 필터의 통과대역을 조절할 수 있어야 한다. 이러한 통과대역 조절이 가능한 고차필터 구현을 위해 디지털 방식 중 하나인 IIR (infinite impulse filter) 필터에 의한 구현방안을 검토하고, 신호검출을 위해 시스템 레벨에서 설계요소들의 최적화를 통해 결함신호검출을 시도하였다.

핵 활동 탐지 및 감시를 위한 딥러닝 기반 의미론적 분할을 활용한 변화 탐지 (Change Detection Using Deep Learning Based Semantic Segmentation for Nuclear Activity Detection and Monitoring)

  • 송아람;이창희;이진민;한유경
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.991-1005
    • /
    • 2022
  • 위성 영상은 핵 활동 탐지와 검증을 위한 효율적인 보조자료로 핵시설과 같이 접근이 어렵고 정보가 제한된 지역에 매우 유용하다. 특히 장비의 이동 또는 시설물의 변화와 같이 핵실험을 준비하는 과정은 시계열 분석을 통해 충분히 식별 가능하다. 본 연구에서는 핵 활동과 관련된 주요 객체의 변화를 탐지하기 위하여, 다시기 영상의 의미론적 분할 결과의 차이를 이용하였다. AIHub에서 제공하는 KOMPSAT 3/3A 영상으로 구성된 객체 판독 데이터셋에서 건물, 도로, 소형 객체의 정보를 추출하여 학습하였으며, U-Net, PSPNet, Attention U-Net에 대하여 주요 파라미터를 변경하며 대상 객체 추출에 적합한 의미론적 분할 모델을 분석하였다. 의미론적 분할 결과의 차영상으로 생성된 결과에 객체 정보를 포함하여 최종 변화 탐지를 수행하였으며, 제안 기법을 임의의 변화를 포함한 시뮬레이션 영상에 적용한 결과, 변화 객체를 효과적으로 추출할 수 있었다. 본 연구에서 제시된 변화 탐지 기법을 적용하기 위해서는, 의미론적 분할의 정확도가 우선적으로 확보되어야 하는 제약이 있으나, 추후 실험 대상 지역에 대한 학습데이터셋이 증가할 수록 적용 가능한 분석 범위가 증가할 것으로 기대된다.

데이터 증강 및 앙상블 기법을 이용한 딥러닝 기반 GPR 공동 탐지 모델 성능 향상 연구 (Improving the Performance of Deep-Learning-Based Ground-Penetrating Radar Cavity Detection Model using Data Augmentation and Ensemble Techniques)

  • 최용욱;서상진;장한길로;윤대웅
    • 지구물리와물리탐사
    • /
    • 제26권4호
    • /
    • pp.211-228
    • /
    • 2023
  • 방조제의 모니터링에는 지구물리학적 비파괴 검사인 GPR (Ground Penetrating Radar) 탐사가 주로 이용된다. GPR 반응은 상황에 따라 복잡한 양상을 보이므로 자료의 처리와 해석은 전문가의 주관적 판단에 의존하며, 이는 오 탐지의 가능성을 불러옴과 동시에 시간이 오래 걸린다는 단점이 있다. 따라서 딥 러닝을 이용하여 GPR 탐사자료의 공동을 탐지하는 다양한 연구들이 수행되고 있다. 딥 러닝 기반 방법은 데이터 기반 방법으로써 풍부한 자료가 필요하나 GPR 탐사의 경우 비용 등의 이유로 학습에 이용할 현장 자료가 부족하다. 따라서 본 논문에서는 데이터 증강 전략을 이용하여 딥 러닝 기반 방조제 GPR 탐사자료 공동 탐지 모델을 개발하였다. 다년간 동일한 방조제에서 탐사 자료를 사용하여 데이터 세트를 구축하였으며, 컴퓨터 비전 분야의 객체 탐지 모델 중 YOLO (You Look Only Once) 모델을 이용하였다. 데이터 증강 전략을 비교 및 분석함으로써 최적의 데이터 증강 전략을 도출하였고, 초기 모델 개발 후 앵커 박스 클러스터링, 전이 학습, 자체 앙상블, 모델 앙상블 기법을 단계적으로 적용하여 최종 모델 도출 후 성능을 평가하였다.

환자움직임 감지를 위한 효율적인 하드웨어 및 소프트웨어 혼성 모드 영상처리시스템설계에 관한 연구 (A study on the design of an efficient hardware and software mixed-mode image processing system for detecting patient movement)

  • 정승민;정의성;김명환
    • 인터넷정보학회논문지
    • /
    • 제25권1호
    • /
    • pp.29-37
    • /
    • 2024
  • 본 논문에서는 환자와 같은 특정 객체의 움직임을 감지하고 추적하기 위한 효율적인 영상처리 시스템을 제안한다. 이진화된 차 영상에서 객체의 윤곽선추출을 위하여 기존 알고리즘대비 대비 정밀한 감지가 가능하고 혼성모드설계에 용이한 세선화 알고리즘을 적용하여 영역을 추출한다. 연산량이 많은 이진화와 세선화 단계를 RTL(Register Transfer Level) 기반으로 설계하여 논리회로 합성을 거쳐 최적화된 하드웨어 블록으로 대체된다. 설계된 이진화 및 세선화 블록은 표준 180n CMOS 라이브러리를 이용하여 논리회로로 합성한 후 시뮬레이션을 통하여 동작을 검증하였다. 소프트웨어기반의 성능비교를 위해 32bit FPGA 임베디드시스템 환경에서 640 × 360 해상도의 샘플 영상을 적용하여 이진 및 세선화 연산에 대한 성능분석도 실시하였다. 검증결과 혼성모드 설계가 이전의 소프트웨어로만 이루어지는 처리속도에서 이진 및 세선화 단계에서 93.8% 향상될 수 있음을 확인하였다. 제안된 객체인식을 위한 혼성모드 시스템은 인공지능 네트워크가 적용되지 않는 엣지 컴퓨팅 환경에서도 환자의 움직임을 효율적으로 감시할 수 있을 것으로 기대된다.

Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks

  • Thanathornwong, Bhornsawan;Suebnukarn, Siriwan
    • Imaging Science in Dentistry
    • /
    • 제50권2호
    • /
    • pp.169-174
    • /
    • 2020
  • Purpose: Periodontal disease causes tooth loss and is associated with cardiovascular diseases, diabetes, and rheumatoid arthritis. The present study proposes using a deep learning-based object detection method to identify periodontally compromised teeth on digital panoramic radiographs. A faster regional convolutional neural network (faster R-CNN) which is a state-of-the-art deep detection network, was adapted from the natural image domain using a small annotated clinical data- set. Materials and Methods: In total, 100 digital panoramic radiographs of periodontally compromised patients were retrospectively collected from our hospital's information system and augmented. The periodontally compromised teeth found in each image were annotated by experts in periodontology to obtain the ground truth. The Keras library, which is written in Python, was used to train and test the model on a single NVidia 1080Ti GPU. The faster R-CNN model used a pretrained ResNet architecture. Results: The average precision rate of 0.81 demonstrated that there was a significant region of overlap between the predicted regions and the ground truth. The average recall rate of 0.80 showed that the periodontally compromised teeth regions generated by the detection method excluded healthiest teeth areas. In addition, the model achieved a sensitivity of 0.84, a specificity of 0.88 and an F-measure of 0.81. Conclusion: The faster R-CNN trained on a limited amount of labeled imaging data performed satisfactorily in detecting periodontally compromised teeth. The application of a faster R-CNN to assist in the detection of periodontally compromised teeth may reduce diagnostic effort by saving assessment time and allowing automated screening documentation.

압축영역에서 움직임 벡터의 재추정을 이용한 비디오 해석 기법 (Video analysis using re-constructing of motion vectors on MPEG compressed domain)

  • 김낙우;김태용;강응관;최종수
    • 대한전자공학회논문지SP
    • /
    • 제39권3호
    • /
    • pp.78-87
    • /
    • 2002
  • 본 논문은 MPEG 비디오에서 나타나는 여러 예측 형태의 움직임 벡터를 프레임 타입에 관계없이 단일 예측방향만을 갖도록 새롭게 추정하여 비디오 영상물의 분석에 직접적으로 활용하는 방안에 대해 제시하고 있다. 또한 재추정된 각 프레임에서의 움직임 벡터를 이용한 비디오 시퀀스 내에서의 객체 추출 및 추적 기법 등에 대해서도 새롭게 제안하였다. 제안된 알고리즘은 압축 영상에 대한 전체적인 복원과정을 거치지 않고, 압축 비디오 영역으로부터 쉽게 추출될 수 있는 매크로 블록 영역 상에서 수행되었으며, 실험 결과는 제안된 방법의 높은 성능을 잘 나타내어 주고 있다.

Improved Accuracy of Cytodiagnosis using the Kato Self-Collection Devise: the Usefulness of Smear Preparation in Liquid-based Cytology Methods

  • Okayama, Kaori;Okodo, Mitsuaki;Fujii, Masahiko;Kumagai, Tomoko;Yabusaki, Hiromi;Shiina, Yoshio;Iwami, Fumihiro;Teruya, Koji;Hatta, Kenmei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4521-4524
    • /
    • 2012
  • Object: In the present study, we compared the positive cytodiagnostic test rates with discrepancies using self-collection devices for cervical cancer screening. We made this survey to examine whether or not our self-smear preparation method using the Kato self-collection device contributed to an improved rate of detecting atypical cells compared with existing recommended preparation methods. Methods: Specimens were collected at 14 facilities handling self-collection methods, and samples were collected by a physician in 2 facilities. The chisquared test was performed using the SPSS ver. 20 statistical software to determine the relationships between the positive cytodiagnostic rate, specimen preparation methods, and self-collection devices. Results: Collecting cells using the Kato self-collection device and preparing liquid-based specimens, we obtained a significantly higher rate of positive cytodiagnosis and our results were equal to those obtained with the direct method. Conclusions: Taking into consideration increased needs for screening using the self-collection method in future, with even more improved test accuracy, a screening test that is acceptable to society needs to be established.