• Title/Summary/Keyword: Object Search

Search Result 665, Processing Time 0.026 seconds

Object Tracking based on Weight Sharing CNN Structure according to Search Area Setting Method Considering Object Movement (객체의 움직임을 고려한 탐색영역 설정에 따른 가중치를 공유하는 CNN구조 기반의 객체 추적)

  • Kim, Jung Uk;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.7
    • /
    • pp.986-993
    • /
    • 2017
  • Object Tracking is a technique for tracking moving objects over time in a video image. Using object tracking technique, many research are conducted such a detecting dangerous situation and recognizing the movement of nearby objects in a smart car. However, it still remains a challenging task such as occlusion, deformation, background clutter, illumination variation, etc. In this paper, we propose a novel deep visual object tracking method that can be operated in robust to many challenging task. For the robust visual object tracking, we proposed a Convolutional Neural Network(CNN) which shares weight of the convolutional layers. Input of the CNN is a three; first frame object image, object image in a previous frame, and current search frame containing the object movement. Also we propose a method to consider the motion of the object when determining the current search area to search for the location of the object. Extensive experimental results on a authorized resource database showed that the proposed method outperformed than the conventional methods.

A Study on Image Segmentation and Tracking based on Intelligent Method (지능기법을 이용한 영상분활 및 물체추적에 관한 연구)

  • Lee, Min-Jung;Hwang, Gi-Hyun;Kim, Jeong-Yoon;Jin, Tae-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.311-312
    • /
    • 2007
  • This dissertation proposes a global search and a local search method to track the object in real-time. The global search recognizes a target object among the candidate objects through the entire image search, and the local search recognizes and track only the target object through the block search. This dissertation uses the object color and feature information to achieve fast object recognition. Finally we conducted an experiment for the object tracking system based on a pan/tilt structure.

  • PDF

A Study on Image Segmentation and Tracking based on Fuzzy Method (퍼지기법을 이용한 영상분할 및 물체추적에 관한 연구)

  • Lee, Min-Jung;Jin, Tae-Seok;Hwang, Gi-Hyung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.368-373
    • /
    • 2007
  • In recent year s there have been increasing interests in real-time object tracking with image information. This dissertation presents a real-time object tracking method through the object recognition based on neural networks that have robust characteristics under various illuminations. This dissertation proposes a global search and a local search method to track the object in real-time. The global search recognizes a target object among the candidate objects through the entire image search, and the local search recognizes and track only the target object through the block search. This dissertation uses the object color and feature information to achieve fast object recognition. The experiment result shows the usefulness of the proposed method is verified.

Robust Tracking Algorithm for Moving Object using Kalman Filter and Variable Search Window Technique (칼만 필터와 가변적 탐색 윈도우 기법을 적용한 강인한 이동 물체 추적 알고리즘)

  • Kim, Young-Kyun;Hyeon, Byeong-Yong;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.7
    • /
    • pp.673-679
    • /
    • 2012
  • This paper introduces robust tracking algorithm for fast and erratic moving object. CAMSHIFT algorithm has less computation and efficient performance for object tracking. However, the method fails to track a object if it moves out of search window by fast velocity and/or large movement. The size of the search window in CAMSHIFT algorithm should be selected manually also. To solve these problems, we propose an efficient prediction technique for fast movement of object using Kalman Filter with automatic initial setting and variable configuration technique for search window. The proposed method is compared to the traditional CAMSHIFT algorithm for searching and tracking performance of objects on test image frames.

Expanded Object Localization Learning Data Generation Using CAM and Selective Search and Its Retraining to Improve WSOL Performance (CAM과 Selective Search를 이용한 확장된 객체 지역화 학습데이터 생성 및 이의 재학습을 통한 WSOL 성능 개선)

  • Go, Sooyeon;Choi, Yeongwoo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.349-358
    • /
    • 2021
  • Recently, a method of finding the attention area or localization area for an object of an image using CAM (Class Activation Map)[1] has been variously carried out as a study of WSOL (Weakly Supervised Object Localization). The attention area extraction from the object heat map using CAM has a disadvantage in that it cannot find the entire area of the object by focusing mainly on the part where the features are most concentrated in the object. To improve this, using CAM and Selective Search[6] together, we first expand the attention area in the heat map, and a Gaussian smoothing is applied to the extended area to generate retraining data. Finally we train the data to expand the attention area of the objects. The proposed method requires retraining only once, and the search time to find an localization area is greatly reduced since the selective search is not needed in this stage. Through the experiment, the attention area was expanded from the existing CAM heat maps, and in the calculation of IOU (Intersection of Union) with the ground truth for the bounding box of the expanded attention area, about 58% was improved compared to the existing CAM.

An Advanced Scheme for Searching Spatial Objects and Identifying Hidden Objects (숨은 객체 식별을 위한 향상된 공간객체 탐색기법)

  • Kim, Jongwan;Cho, Yang-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1518-1524
    • /
    • 2014
  • In this paper, a new method of spatial query, which is called Surround Search (SuSe) is suggested. This method makes it possible to search for the closest spatial object of interest to the user from a query point. SuSe is differentiated from the existing spatial object query schemes, because it locates the closest spatial object of interest around the query point. While SuSe searches the surroundings, the spatial object is saved on an R-tree, and MINDIST, the distance between the query location and objects, is measured by considering an angle that the existing spatial object query methods have not previously considered. The angle between targeted-search objects is found from a query point that is hidden behind another object in order to distinguish hidden objects from them. The distinct feature of this proposed scheme is that it can search the faraway or hidden objects, in contrast to the existing method. SuSe is able to search for spatial objects more precisely, and users can be confident that this scheme will have superior performance to its predecessor.

Image Processing-based Object Recognition Approach for Automatic Operation of Cranes

  • Zhou, Ying;Guo, Hongling;Ma, Ling;Zhang, Zhitian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.399-408
    • /
    • 2020
  • The construction industry is suffering from aging workers, frequent accidents, as well as low productivity. With the rapid development of information technologies in recent years, automatic construction, especially automatic cranes, is regarded as a promising solution for the above problems and attracting more and more attention. However, in practice, limited by the complexity and dynamics of construction environment, manual inspection which is time-consuming and error-prone is still the only way to recognize the search object for the operation of crane. To solve this problem, an image-processing-based automated object recognition approach is proposed in this paper, which is a fusion of Convolutional-Neutral-Network (CNN)-based and traditional object detections. The search object is firstly extracted from the background by the trained Faster R-CNN. And then through a series of image processing including Canny, Hough and Endpoints clustering analysis, the vertices of the search object can be determined to locate it in 3D space uniquely. Finally, the features (e.g., centroid coordinate, size, and color) of the search object are extracted for further recognition. The approach presented in this paper was implemented in OpenCV, and the prototype was written in Microsoft Visual C++. This proposed approach shows great potential for the automatic operation of crane. Further researches and more extensive field experiments will follow in the future.

  • PDF

Decimation-in-time Search Direction Algorithm for Displacement Prediction of Moving Object (이동물체의 변위 예측을 위한 시간솎음 탐색 방향 알고리즘)

  • Lim Kang-mo;Lee Joo-shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.338-347
    • /
    • 2005
  • In this paper, a decimation-in-time search direction algorithm for displacement prediction of moving object is proposed. The initialization of the proposed algorithm for moving direction prediction is performed by detecting moving objects at sequential frames and by obtaining a moving angle and a moving distance. A moving direction of the moving object at current frame is obtained by applying the decimation-in-time search direction mask. The decimation-in-tine search direction mask is that the moving object is detected by thinning out frames among the sequential frames, and the moving direction of the moving object is predicted by the search mask which is decided by obtaining the moving angle of the moving object in the 8 directions. to examine the propriety of the proposed algorithm, velocities of a driving car are measured and tracked, and to evaluate the efficiency, the proposed algorithm is compared to the full search algorithm. The evaluated results show that the number of displacement search times is reduced up to 91.8$\%$ on the average in the proposed algorithm, and the processing time of the tracking is 32.1ms on the average.

Algorithm for Finding K-Nearest Object Pairs in Circular Search Spaces (순환검색공간에서 K-최근접객체 쌍을 찾는 알고리즘에 관한 연구)

  • Seon, Hwi-Joon;Kim, Hong-Ki
    • Spatial Information Research
    • /
    • v.20 no.2
    • /
    • pp.165-172
    • /
    • 2012
  • The query of the K closest object pairs between two object sets frequently occurs at recently retrieval systems. The circular location property of objects should be considered for efficiently process queries finding such a K nearest object pair. In this paper, we propose the optimal algorithm finding the K object pairs which are closest to each other in a search space with a circular domain and show its performance by experiments. The proposed algorithm optimizes the cost of finding the K nearest object pairs by using the circular search distances which is much applied the circular location property.

Object Tracking Using CAM shift with 8-way Search Window (CAM shift와 8방향 탐색 윈도우를 이용한 객체 추적)

  • Kim, Nam-Gon;Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.636-644
    • /
    • 2015
  • This research aims to suggest methods to improve object tracking performance by combining CAM shift algorithm with 8-way search window, and reduce arithmetic operation by reducing the number of frame used for tracking. CAM shift has its adverse effect in tracking methods using signature color or having difficulty in tracking rapidly moving object. To resolve this, moving search window of CAM shift makes it possible to more accurately track high-speed moving object after finding object by conducting 8-way search by using information at a final successful timing point from a timing point missing tracking object. Moreover, hardware development led to increased unnecessary arithmetic operation by increasing the number of frame produced per second, which indicates efficiency can be enhanced by reducing the number of frame used in tracking to reduce unnecessary arithmetic operation.