• Title/Summary/Keyword: Object Scanning

Search Result 256, Processing Time 0.031 seconds

Optical Reconstruction of Full-color Optical Scanning Holography Images using an Iterative Direct Binary Search Algorithm

  • Lee, Eung Joon;Cho, Kwang Hun;Kim, Kyung Beom;Lim, Seung Ram;Kim, Taegeun;Kang, Ji-Hoon;Ju, Byeong-Kwon;Park, Sang-Ju;Park, Min-Chul;Kim, Dae-Yeon
    • Journal of the Korean Physical Society
    • /
    • v.73 no.12
    • /
    • pp.1845-1848
    • /
    • 2018
  • We introduce a process for optically reconstructing full-color holographic images recorded by optical scanning holography. A complex RGB-color hologram was recorded and converted into a binary hologram using a direct binary search (DBS) algorithm. The generated binary hologram was then optically reconstructed using a spatial light modulator. The discrepancies between the reconstructed object sizes and colors due to chromatic aberration were corrected by adjusting the reconstruction parameters in the DBS algorithm. To the best of our knowledge, this represents the first optical reconstruction of a full-color hologram recorded by optical scanning holography.

Direct Finite Element Model Generation using 3 Dimensional Scan Data (3D SCAN DATA 를 이용한 직접유한요소모델 생성)

  • Lee Su-Young;Kim Sung-Jin;Jeong Jae-Young;Park Jong-Sik;Lee Seong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.5 s.182
    • /
    • pp.143-148
    • /
    • 2006
  • It is still very difficult to generate a geometry model and finite element model, which has complex and many free surface, even though 3D CAD solutions are applied. Furthermore, in the medical field, which is a big growth area of recent years, there is no drawing. For these reasons, making a geometry model, which is used in finite element analysis, is very difficult. To resolve these problems and satisfy the requests of the need to create a 3D digital file for an object where none had existed before, new technologies are appeared recently. Among the recent technologies, there is a growing interest in the availability of fast, affordable optical range laser scanning. The development of 3D laser scan technology to obtain 3D point cloud data, made it possible to generate 3D model of complex object. To generate CAD and finite element model using point cloud data from 3D scanning, surface reconstruction applications have widely used. In the early stage, these applications have many difficulties, such as data handling, model creation time and so on. Recently developed point-based surface generation applications partly resolve these difficulties. However there are still many problems. In case of large and complex object scanning, generation of CAD and finite element model has a significant amount of working time and effort. Hence, we concerned developing a good direct finite element model generation method using point cloud's location coordinate value to save working time and obtain accurate finite element model.

An Evaluation on the Accuracy of a 3D Scanning Device Using Spherical Coordinate Mechanisms (구면좌표계식 기구를 이용한 3D 스캐닝 장치의 정밀도 평가)

  • Maeng, Hee-Young;Park, Sangwook
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • To improve the efficiency of a reverse engineering process, many researches have recently tried to develop efficient, automatic 3D scanning devices. A new automatic 3D scanning device using a spherical coordinate system mechanism is introduced in this study. This device incorporates a guide motion along the spherical coordinate to compound each 3D data point automatically. The experiments correlating the system assembling tolerance with the form accuracy were conducted to verify the efficiency of the system for the scanning of an object, including complex shapes and manifold sections. In addition, the required time and system accuracy, taken during the scanning process of complicated artifact models, were investigated. Further, based on these empirical results, it was ascertained that the superior productivity of this new device offers a more precise and efficient scan when compared to conventional methodologies.

Quantifying Aberrations on Object Plane Using Zernike Polynomials

  • Yohan Kim;Theo Nam Sohn;Cheong Soo Seo;Jin Young Sohn
    • Current Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.151-155
    • /
    • 2024
  • Optical systems often suffer from optical aberrations caused by imperfect hardware, which places significant constraints on their utility and performance. To reduce these undesirable effects, a comprehensive understanding of the aberrations inherent to optical systems is needed. This article presents an effective method for aberration detection using Zernike polynomials. The process involves scanning the object plane to identify the optimal focus and subsequently fitting the acquired focus data to Zernike polynomials. This fitting procedure facilitates the analysis of various aberrations in the optical system.

Tracking Control of a Moving Target Using a Robot Vision System

  • Kim, Dong-Hwan;Cheon, Gyung-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.77.5-77
    • /
    • 2001
  • A Robot vision system with a visual skill so as take information for arbitrary target or object has been applied to auto-inspection and assembling system. It catches the moving target with the manipulator by using the information from the vision system. The robot needs some information where the moving object will place after certain time. A camera is fixed on a robot manipulator, not on the fixed support outside of the robot. It secures wider working area than the fixed camera, and it dedicates to auto scanning of the object. It computes some information on the object center, angle and speed by vision data, and can guess grabbing spot by arriving time. When the location ...

  • PDF

Resolution in Optical Scanning Holography (광스캔닝 훌로그래피의 해상도)

  • Doh, Kyu Bong
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.2
    • /
    • pp.126-131
    • /
    • 1998
  • In optical scanning holography, 3-D holographic information of an object is generated by 2-D active optical scanning. The optical scanning beam can be a time-dependent Gaussian apodized Fresnel zone plate. In this technique, the holographic information manifests itself as an electrical signal which can be sent to an electron-beam-addressed spatial light modulator for coherent image reconstruction. This technique can be applied to 3-D optical remote sensing especially for identifying flying objects. In this paper, we first briefly review optical scanning holography and analyze the resolution achievable with the system. We then present mathematical expression of real and virtual image which are responsible for holographic image reconstruction by using Gaussian beam profile.

  • PDF

Dental Impression Measurement Based on an Adaptive Measuring Process Plan (적응형 측정계획 기반 치과인상 측정)

  • Park, Sang Chul;Chung, Yong Ho;Hwam, Won Kyung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.4
    • /
    • pp.283-289
    • /
    • 2013
  • Presented in this paper is an adaptive measuring procedure of dental impression using the Structured Light System. While measuring a complex object, such as dental impression, in the reverse engineering, it is not possible to acquire all parts of the scanned surface. Missing scanned data is resulted in holes in a created triangular mesh. The focus of this paper is to introduce an algorithm for automatic identification of additional scanning orientations to fill holes that are created by a default scan. The proposed algorithm was developed by the three major technological requirements: camera visibility, projector visibility, data reliability. In order to satisfy the requirements, the proposed algorithm determines additional scanning orientation from the orientation of a projection plane derived from the average normal vector of boundary triangles.

A Study on the Motion Characteristics of the Ultrasonic Transport System using Laser Scanning Vibrometer (레이저 진동 측정기를 이용한 초음파 이송 시스템의 동작특성에 관한 연구)

  • 정상화;신병수;이경형
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.155-158
    • /
    • 2003
  • In the semiconductor and the optical industry a new transport system which can replace the conventional sliding system is required. These systems are driven by magnetic field and conveyer belt. The magnetic field damages semiconductor and contact force scratches the optical lens. The ultrasonic wave driven system can solve these problem. In this paper, the vibration behavior of flexural beam in the ultrasonic transport system is verified using Laser Scanning Vibrometer. The experiments for verifying vibration are performed in three conditions such as in the maximum transport speed, in the zero speed, and in the change of transport direction.

  • PDF

Evaluation of the Speckle Noise in Optical Scanning Holography (광 스캐닝 홀로그래피와 스펙클 잡음에 의한 오염도 평가)

  • Kim, You Seok;Kim, Taegeun
    • Korean Journal of Optics and Photonics
    • /
    • v.25 no.3
    • /
    • pp.142-145
    • /
    • 2014
  • In this paper we record the complex hologram of a real object with optical scanning holography (OSH). We reconstruct the complex hologram using a numerical process, and then we evaluate the degree of contamination by speckle noise between the reconstruction of the complex hologram and the image captured by a CCD camera. We use the contrast of the speckle pattern for quantitative evaluation.

Development of a 3D earthwork model based on reverse engineering

  • Kim, Sung-Keun
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.641-642
    • /
    • 2015
  • Unlike for other building processes, BIM for earthwork does not need a large variety of 3D model shapes; however, it requires a 3D model that can efficiently reflect the changing features of the ground shape and provide soil type-dependent workload calculation and information on equipment for optimal management. Objects for earthwork have not yet been defined because the current BIM system does not provide them. The BIM technology commonly applied in the manufacturing center uses real-object data obtained through 3D scanning to generate 3D parametric solid models. 3D scanning, which is used when there are no existing 3D models, has the advantage of being able to rapidly generate parametric solid models. In this study, A method to generate 3D models for earthwork operations using reverse engineering is suggested. 3D scanning is used to create a point cloud of a construction site and the point cloud data are used to generate a surface model, which was then converted into a parametric model with 3D objects for earthwork

  • PDF