• 제목/요약/키워드: Object Recognition Technology

검색결과 471건 처리시간 0.025초

사용자 인증을 위한 딥러닝 기반 얼굴인식 기술 동향 (A Survey on Deep Learning based Face Recognition for User Authentication)

  • 문형진;김계희
    • 산업융합연구
    • /
    • 제17권3호
    • /
    • pp.23-29
    • /
    • 2019
  • 차이가 나는 물체를 구별하는 물체인식과 달리, 얼굴인식은 유사한 패턴을 가진 얼굴의 Identity를 구별한다. 이에 따라 LBP, HOG, Gabor과 같은 특징 추출 알고리즘이 딥러닝 기반으로 대체되고 있다. 딥 러닝 기술을 활용하여 머신러닝으로 얼굴을 식별할 수 있는 기술이 발전하면서 다양한 분야에서 얼굴인식 기술이 활용되고 있다. 특히, 금융 거래 외에도 사용자 식별이 필요한 다양한 오프라인 환경에서 활용되어 세밀하고 개인에 적합한 서비스가 제공될 수 있다. 얼굴 인식 기술은 스마트 미러와 같은 장치를 통해 손쉽게 사용자 인증을 하고, 식별이 된 사용자에게 서비스를 제공할 수 있는 기술로 발전할 수 있다. 본 논문에서는 사용자 인증의 다양한 기법 중에서 얼굴인식 기술에 대한 조사 및 파이썬으로 작성된 얼굴인식 사례 소스 분석과 얼굴인식 기술을 활용한 다양한 서비스의 가능성을 제시하고자 한다.

자원 제약적 기기에서 자율주행의 실시간 객체탐지를 위한 태스크 오프로딩 적용에 관한 연구 (A Study on the Application of Task Offloading for Real-Time Object Detection in Resource-Constrained Devices)

  • 장신원;홍용근
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권12호
    • /
    • pp.363-370
    • /
    • 2023
  • 도로와 주변의 상황을 정확히 인지하는 객체탐지 기술은 자율주행 분야에 핵심적인 기술이다. 자율주행 분야에 객체탐지 기술은 추론 서비스의 정확도와 함께 실시간성도 요구된다. 고성능 머신이 아닌 자원제약 기기에서 정확도와 함께 실시간성을 위한 객체탐지 기술을 적용하기 위해서는 태스크 오프로딩 기술을 활용해야 한다. 본 논문에서는 자원 제약적 기기에서 자율주행의 실시간 객체탐지를 위한 태스크 오프로딩 적용과 관련하여 태스크 오프로딩의 성능 비교, 입력 이미지 해상도에 따른 성능 비교, 카메라 객체 해상도에 따른 성능 비교 등의 실험을 수행하고 결과를 분석하였다. 본 실험에서 낮은 해상도의 이미지는 태스크 오프로딩 구조의 적용을 통하여 성능 개선을 도출할 수 있었고, 이는 자율주행의 실시간 기준을 충족하였다. 높은 해상도의 이미지는 성능 개선은 있었으나 통신 시간의 증가에 따른 이유로 자율 주행의 실시간 기준을 충족하지 못하였다. 이러한 실험을 통해 자율주행에서의 객체인식은 사용하는 객체인식 모델과 함께 입력 이미지, 통신 환경 등의 다양한 조건이 영향을 미친다는 것을 확인할 수 있었다.

Implementation of YOLOv5-based Forest Fire Smoke Monitoring Model with Increased Recognition of Unstructured Objects by Increasing Self-learning data

  • Gun-wo, Do;Minyoung, Kim;Si-woong, Jang
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.536-546
    • /
    • 2022
  • A society will lose a lot of something in this field when the forest fire broke out. If a forest fire can be detected in advance, damage caused by the spread of forest fires can be prevented early. So, we studied how to detect forest fires using CCTV currently installed. In this paper, we present a deep learning-based model through efficient image data construction for monitoring forest fire smoke, which is unstructured data, based on the deep learning model YOLOv5. Through this study, we conducted a study to accurately detect forest fire smoke, one of the amorphous objects of various forms, in YOLOv5. In this paper, we introduce a method of self-learning by producing insufficient data on its own to increase accuracy for unstructured object recognition. The method presented in this paper constructs a dataset with a fixed labelling position for images containing objects that can be extracted from the original image, through the original image and a model that learned from it. In addition, by training the deep learning model, the performance(mAP) was improved, and the errors occurred by detecting objects other than the learning object were reduced, compared to the model in which only the original image was learned.

An Object Classification Algorithm Based on Histogram of Oriented Gradients and Multiclass AdaBoost

  • Yun, Anastasiya;Lenskiy, Artem;Lee, Jong Soo
    • 한국정보전자통신기술학회논문지
    • /
    • 제1권3호
    • /
    • pp.83-89
    • /
    • 2008
  • This paper introduces a visual object classification algorithm based on statistical information. Objects are characterized through the Histogram of Oriented Gradients (HOG) method and classification is performed using Multiclass AdaBoost. Salient features of an object's appearance are detected by HOG blocks Blocks of different sizes are tested to define the most suitable configuration. To select the most informative blocks for classification a multiclass AdaBoostSVM algorithm is applied. The proposed method has a high speed processing and classification rate. Results of the evaluation based on example of hand gesture recognition are presented.

  • PDF

한국어 음성인식 플랫폼의 설계 (Design of a Korean Speech Recognition Platform)

  • 권오욱;김회린;유창동;김봉완;이용주
    • 대한음성학회지:말소리
    • /
    • 제51호
    • /
    • pp.151-165
    • /
    • 2004
  • For educational and research purposes, a Korean speech recognition platform is designed. It is based on an object-oriented architecture and can be easily modified so that researchers can readily evaluate the performance of a recognition algorithm of interest. This platform will save development time for many who are interested in speech recognition. The platform includes the following modules: Noise reduction, end-point detection, met-frequency cepstral coefficient (MFCC) and perceptually linear prediction (PLP)-based feature extraction, hidden Markov model (HMM)-based acoustic modeling, n-gram language modeling, n-best search, and Korean language processing. The decoder of the platform can handle both lexical search trees for large vocabulary speech recognition and finite-state networks for small-to-medium vocabulary speech recognition. It performs word-dependent n-best search algorithm with a bigram language model in the first forward search stage and then extracts a word lattice and restores each lattice path with a trigram language model in the second stage.

  • PDF

Intention Recognition Using Case-base Learning in Human Vehicle

  • Yamaguchi, Toru;Dayaong, Chen;Takeda, Yasuhiro;Jing, Jianping
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.110-113
    • /
    • 2003
  • Most traffic accidents are caused by drivers' carelessness and lack of information on the surrounding objects. In this paper we proposed a model of human intention recognition through case-base learning and to build up an experiment system. The system can help us recognize object's intention (e.g. turn left, turn right or straight) by using detected data about human's motion, speed of the car and the distance between the car and the intersection. Furthermore, we included an example using case-base learning in this paper to improve the precision of recognition as well as an example to explain the use of the system. PC can be used to predict the driving reaction beforehand and send a warning signal to the driver in time if there is any danger.

  • PDF

우리나라 국민의 우주위험인식 수준과 국가 재난정책 (Public's Recognition of the Space Object's Re-entry Situations and the National Space Disaster Management Policy)

  • 김시은;조성기;홍정유
    • 한국안전학회지
    • /
    • 제31권6호
    • /
    • pp.84-92
    • /
    • 2016
  • Since the mankind started its space mission, the number of artificial space objects has been increasing exponentially. It contains not just the space machines which are in use but the machines which are out of order. Meantime, those dead machines are being a serious danger, a real threat to human's lives and property because of it could re-enter into the earth's atmosphere and fall to the ground causing mega-disaster. As the number of space activities gets growing so far, the re-entry of the space objects will be a lot more happened in the future. Therefore, not just natural space object like asteroids but the artificial space object like artificial satellite and space station can cause the disaster by falling to the ground. To protect our nation and our property, the government has set up the space disaster management center in Korea astronomy and Space science Institute. In this study, we surveyed public's recognition of the space object's re-entry situation and analyzed it to contribute building national space disaster management policy.

CNN 기반 딥러닝을 이용한 임베디드 리눅스 양각 문자 인식 시스템 구현 (An Implementation of Embedded Linux System for Embossed Digit Recognition using CNN based Deep Learning)

  • 유연승;김정길;홍충표
    • 반도체디스플레이기술학회지
    • /
    • 제19권2호
    • /
    • pp.100-104
    • /
    • 2020
  • Over the past several years, deep learning has been widely used for feature extraction in image and video for various applications such as object classification and facial recognition. This paper introduces an implantation of embedded Linux system for embossed digits recognition using CNN based deep learning methods. For this purpose, we implemented a coin recognition system based on deep learning with the Keras open source library on Raspberry PI. The performance evaluation has been made with the success rate of coin classification using the images captured with ultra-wide angle camera on Raspberry PI. The simulation result shows 98% of the success rate on average.

Study On Masked Face Detection And Recognition using transfer learning

  • Kwak, NaeJoung;Kim, DongJu
    • International Journal of Advanced Culture Technology
    • /
    • 제10권1호
    • /
    • pp.294-301
    • /
    • 2022
  • COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.

딥러닝 기반 달 표면 모사 환경 실시간 객체 인식 및 매칭 시스템 개발 (Development of System for Real-Time Object Recognition and Matching using Deep Learning at Simulated Lunar Surface Environment)

  • 나종호;공준호;이수득;신휴성
    • 터널과지하공간
    • /
    • 제33권4호
    • /
    • pp.281-298
    • /
    • 2023
  • 달 현지 탐사를 위해 무인 이동체에 대한 연구가 지속적으로 이루어져 있으며 달 지상 관심 지역의 정확한 위치 및 맵핑을 위한 실시간 정보화 작업이 요구되고 있다. 딥러닝 영상 처리 분석 기술을 실제 로버에 적용하기 위해 소프트웨어의 통합과 최적화에 대한 연구가 필요하며 본 연구에서는 가상의 달 기지 건설현장의 영상을 실시간 분석하여 핵심 객체의 공간 정보를 자동으로 수치화하는 방안에 대한 기초 연구가 진행되었다. 본 연구를 통해 이미 구축된 영역 분할 기반 객체 인식 알고리즘을 경계 상자 기반 객체 인식알고리즘으로 변경하여 객체 인식 정확도 및 추론 속도를 개선하는 작업이 이루어졌으며, 대용량 데이터 기반 객체 매칭 학습을 위해 Batch Hard Triplet Mining 기법을 도입하고, 학습 및 추론에 대한 최적화 연구가 수행되었다. 또한 개선된 객체 인식 및 동일 객체 매칭 소프트웨어를 통합하고, 입력 이미지 내 동일 객체 자동 매칭을 시각화하는 소프트웨어를 개발하였으며, 위성 모사 촬영 영상 내 객체를 학습 데이터로, 이동체 촬영 영상 내 객체를 추론 데이터로 사용하여 동일 객체 매칭의 학습 및 추론이 이루어졌다. 본 연구의 결과는 이동체의 연속 촬영 영상을 기반 3차원 공간 정보를 구현 및 관심 공간 내 객체 위치 설정에 활용할 수 있을 것으로 사료되며, 향후 달 기지 건설 현장에서의 영상 기반 시공 모니터링 및 제어를 위한 자동 현장 및 주요 대상물 공간 정보 구축 시스템과의 연계에 기여할 것으로 기대된다.