차이가 나는 물체를 구별하는 물체인식과 달리, 얼굴인식은 유사한 패턴을 가진 얼굴의 Identity를 구별한다. 이에 따라 LBP, HOG, Gabor과 같은 특징 추출 알고리즘이 딥러닝 기반으로 대체되고 있다. 딥 러닝 기술을 활용하여 머신러닝으로 얼굴을 식별할 수 있는 기술이 발전하면서 다양한 분야에서 얼굴인식 기술이 활용되고 있다. 특히, 금융 거래 외에도 사용자 식별이 필요한 다양한 오프라인 환경에서 활용되어 세밀하고 개인에 적합한 서비스가 제공될 수 있다. 얼굴 인식 기술은 스마트 미러와 같은 장치를 통해 손쉽게 사용자 인증을 하고, 식별이 된 사용자에게 서비스를 제공할 수 있는 기술로 발전할 수 있다. 본 논문에서는 사용자 인증의 다양한 기법 중에서 얼굴인식 기술에 대한 조사 및 파이썬으로 작성된 얼굴인식 사례 소스 분석과 얼굴인식 기술을 활용한 다양한 서비스의 가능성을 제시하고자 한다.
도로와 주변의 상황을 정확히 인지하는 객체탐지 기술은 자율주행 분야에 핵심적인 기술이다. 자율주행 분야에 객체탐지 기술은 추론 서비스의 정확도와 함께 실시간성도 요구된다. 고성능 머신이 아닌 자원제약 기기에서 정확도와 함께 실시간성을 위한 객체탐지 기술을 적용하기 위해서는 태스크 오프로딩 기술을 활용해야 한다. 본 논문에서는 자원 제약적 기기에서 자율주행의 실시간 객체탐지를 위한 태스크 오프로딩 적용과 관련하여 태스크 오프로딩의 성능 비교, 입력 이미지 해상도에 따른 성능 비교, 카메라 객체 해상도에 따른 성능 비교 등의 실험을 수행하고 결과를 분석하였다. 본 실험에서 낮은 해상도의 이미지는 태스크 오프로딩 구조의 적용을 통하여 성능 개선을 도출할 수 있었고, 이는 자율주행의 실시간 기준을 충족하였다. 높은 해상도의 이미지는 성능 개선은 있었으나 통신 시간의 증가에 따른 이유로 자율 주행의 실시간 기준을 충족하지 못하였다. 이러한 실험을 통해 자율주행에서의 객체인식은 사용하는 객체인식 모델과 함께 입력 이미지, 통신 환경 등의 다양한 조건이 영향을 미친다는 것을 확인할 수 있었다.
International Journal of Advanced Culture Technology
/
제10권4호
/
pp.536-546
/
2022
A society will lose a lot of something in this field when the forest fire broke out. If a forest fire can be detected in advance, damage caused by the spread of forest fires can be prevented early. So, we studied how to detect forest fires using CCTV currently installed. In this paper, we present a deep learning-based model through efficient image data construction for monitoring forest fire smoke, which is unstructured data, based on the deep learning model YOLOv5. Through this study, we conducted a study to accurately detect forest fire smoke, one of the amorphous objects of various forms, in YOLOv5. In this paper, we introduce a method of self-learning by producing insufficient data on its own to increase accuracy for unstructured object recognition. The method presented in this paper constructs a dataset with a fixed labelling position for images containing objects that can be extracted from the original image, through the original image and a model that learned from it. In addition, by training the deep learning model, the performance(mAP) was improved, and the errors occurred by detecting objects other than the learning object were reduced, compared to the model in which only the original image was learned.
This paper introduces a visual object classification algorithm based on statistical information. Objects are characterized through the Histogram of Oriented Gradients (HOG) method and classification is performed using Multiclass AdaBoost. Salient features of an object's appearance are detected by HOG blocks Blocks of different sizes are tested to define the most suitable configuration. To select the most informative blocks for classification a multiclass AdaBoostSVM algorithm is applied. The proposed method has a high speed processing and classification rate. Results of the evaluation based on example of hand gesture recognition are presented.
For educational and research purposes, a Korean speech recognition platform is designed. It is based on an object-oriented architecture and can be easily modified so that researchers can readily evaluate the performance of a recognition algorithm of interest. This platform will save development time for many who are interested in speech recognition. The platform includes the following modules: Noise reduction, end-point detection, met-frequency cepstral coefficient (MFCC) and perceptually linear prediction (PLP)-based feature extraction, hidden Markov model (HMM)-based acoustic modeling, n-gram language modeling, n-best search, and Korean language processing. The decoder of the platform can handle both lexical search trees for large vocabulary speech recognition and finite-state networks for small-to-medium vocabulary speech recognition. It performs word-dependent n-best search algorithm with a bigram language model in the first forward search stage and then extracts a word lattice and restores each lattice path with a trigram language model in the second stage.
Most traffic accidents are caused by drivers' carelessness and lack of information on the surrounding objects. In this paper we proposed a model of human intention recognition through case-base learning and to build up an experiment system. The system can help us recognize object's intention (e.g. turn left, turn right or straight) by using detected data about human's motion, speed of the car and the distance between the car and the intersection. Furthermore, we included an example using case-base learning in this paper to improve the precision of recognition as well as an example to explain the use of the system. PC can be used to predict the driving reaction beforehand and send a warning signal to the driver in time if there is any danger.
Since the mankind started its space mission, the number of artificial space objects has been increasing exponentially. It contains not just the space machines which are in use but the machines which are out of order. Meantime, those dead machines are being a serious danger, a real threat to human's lives and property because of it could re-enter into the earth's atmosphere and fall to the ground causing mega-disaster. As the number of space activities gets growing so far, the re-entry of the space objects will be a lot more happened in the future. Therefore, not just natural space object like asteroids but the artificial space object like artificial satellite and space station can cause the disaster by falling to the ground. To protect our nation and our property, the government has set up the space disaster management center in Korea astronomy and Space science Institute. In this study, we surveyed public's recognition of the space object's re-entry situation and analyzed it to contribute building national space disaster management policy.
Over the past several years, deep learning has been widely used for feature extraction in image and video for various applications such as object classification and facial recognition. This paper introduces an implantation of embedded Linux system for embossed digits recognition using CNN based deep learning methods. For this purpose, we implemented a coin recognition system based on deep learning with the Keras open source library on Raspberry PI. The performance evaluation has been made with the success rate of coin classification using the images captured with ultra-wide angle camera on Raspberry PI. The simulation result shows 98% of the success rate on average.
International Journal of Advanced Culture Technology
/
제10권1호
/
pp.294-301
/
2022
COVID-19 is a crisis with numerous casualties. The World Health Organization (WHO) has declared the use of masks as an essential safety measure during the COVID-19 pandemic. Therefore, whether or not to wear a mask is an important issue when entering and exiting public places and institutions. However, this makes face recognition a very difficult task because certain parts of the face are hidden. As a result, face identification and identity verification in the access system became difficult. In this paper, we propose a system that can detect masked face using transfer learning of Yolov5s and recognize the user using transfer learning of Facenet. Transfer learning preforms by changing the learning rate, epoch, and batch size, their results are evaluated, and the best model is selected as representative model. It has been confirmed that the proposed model is good at detecting masked face and masked face recognition.
달 현지 탐사를 위해 무인 이동체에 대한 연구가 지속적으로 이루어져 있으며 달 지상 관심 지역의 정확한 위치 및 맵핑을 위한 실시간 정보화 작업이 요구되고 있다. 딥러닝 영상 처리 분석 기술을 실제 로버에 적용하기 위해 소프트웨어의 통합과 최적화에 대한 연구가 필요하며 본 연구에서는 가상의 달 기지 건설현장의 영상을 실시간 분석하여 핵심 객체의 공간 정보를 자동으로 수치화하는 방안에 대한 기초 연구가 진행되었다. 본 연구를 통해 이미 구축된 영역 분할 기반 객체 인식 알고리즘을 경계 상자 기반 객체 인식알고리즘으로 변경하여 객체 인식 정확도 및 추론 속도를 개선하는 작업이 이루어졌으며, 대용량 데이터 기반 객체 매칭 학습을 위해 Batch Hard Triplet Mining 기법을 도입하고, 학습 및 추론에 대한 최적화 연구가 수행되었다. 또한 개선된 객체 인식 및 동일 객체 매칭 소프트웨어를 통합하고, 입력 이미지 내 동일 객체 자동 매칭을 시각화하는 소프트웨어를 개발하였으며, 위성 모사 촬영 영상 내 객체를 학습 데이터로, 이동체 촬영 영상 내 객체를 추론 데이터로 사용하여 동일 객체 매칭의 학습 및 추론이 이루어졌다. 본 연구의 결과는 이동체의 연속 촬영 영상을 기반 3차원 공간 정보를 구현 및 관심 공간 내 객체 위치 설정에 활용할 수 있을 것으로 사료되며, 향후 달 기지 건설 현장에서의 영상 기반 시공 모니터링 및 제어를 위한 자동 현장 및 주요 대상물 공간 정보 구축 시스템과의 연계에 기여할 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.