• Title/Summary/Keyword: Object Recognition Algorithm

Search Result 517, Processing Time 0.027 seconds

Door Recognition using Visual Fuzzy System in Indoor Environments (시각 퍼지 시스템을 이용한 실내 문 인식)

  • Yi, Chu-Ho;Lee, Sang-Heon;Jeong, Seung-Do;Suh, Il-Hong;Choi, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.73-82
    • /
    • 2010
  • Door is an important object to understand given environment and it could be used to distinguish with corridors and rooms. Doors are widely used natural landmark in mobile robotics for localization and navigation. However, almost algorithm for door recognition with camera is difficult real-time application because feature extraction and matching have heavy computation complexity. This paper proposes a method to recognize a door in corridor. First, we extract distinguished lines which have high possibility to comprise of door using Hough transformation. Then, we detect candidate of door region by applying previously extracted lines to first-stage visual fuzzy system. Finally, door regions are determined by verifying knob region in candidate of door region suing second-stage visual fuzzy system.

A Flexible Model-Based Face Region Detection Method (유연한 모델 기반의 얼굴 영역 검출 방법)

  • Jang, Seok-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.251-256
    • /
    • 2021
  • Unlike general cameras, a high-speed camera capable of capturing a large number of frames per second can enable the advancement of some image processing technologies that have been limited so far. This paper proposes a method of removing undesirable noise from an high-speed input color image, and then detecting a human face from the noise-free image. In this paper, noise pixels included in the ultrafast input image are first removed by applying a bidirectional filter. Then, using RetinaFace, a region representing the person's personal information is robustly detected from the image where noise was removed. The experimental results show that the described algorithm removes noise from the input image and then robustly detects a human face using the generated model. The model-based face-detection method presented in this paper is expected to be used as basic technology for many practical application fields related to image processing and pattern recognition, such as indoor and outdoor building monitoring, door opening and closing management, and mobile biometric authentication.

Experimental Comparison of CNN-based Steganalysis Methods with Structural Differences (구조적인 차이를 가지는 CNN 기반의 스테그아날리시스 방법의 실험적 비교)

  • Kim, Jaeyoung;Park, Hanhoon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.24 no.2
    • /
    • pp.315-328
    • /
    • 2019
  • Image steganalysis is an algorithm that classifies input images into stego images with steganography methods and cover images without steganography methods. Previously, handcrafted feature-based steganalysis methods have been mainly studied. However, CNN-based objects recognition has achieved great successes and CNN-based steganalysis is actively studied recently. Unlike object recognition, CNN-based steganalysis requires preprocessing filters to discriminate the subtle difference between cover images from stego images. Therefore, CNN-based steganalysis studies have focused on developing effective preprocessing filters as well as network structures. In this paper, we compare previous studies in same experimental conditions, and based on the results, we analy ze the performance variation caused by the differences in preprocessing filter and network structure.

Optimization of Pose Estimation Model based on Genetic Algorithms for Anomaly Detection in Unmanned Stores (무인점포 이상행동 인식을 위한 유전 알고리즘 기반 자세 추정 모델 최적화)

  • Sang-Hyeop Lee;Jang-Sik Park
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.113-119
    • /
    • 2023
  • In this paper, we propose an optimization of a pose estimation deep learning model for recognition of abnormal behavior in unmanned stores using radio frequencies. The radio frequency use millimeter wave in the 30 GHz to 300 GHz band. Due to the short wavelength and strong straightness, it is a frequency with less grayness and less interference due to radio absorption on the object. A millimeter wave radar is used to solve the problem of personal information infringement that may occur in conventional CCTV image-based pose estimation. Deep learning-based pose estimation models generally use convolution neural networks. The convolution neural network is a combination of convolution layers and pooling layers of different types, and there are many cases of convolution filter size, number, and convolution operations, and more cases of combining components. Therefore, it is difficult to find the structure and components of the optimal posture estimation model for input data. Compared with conventional millimeter wave-based posture estimation studies, it is possible to explore the structure and components of the optimal posture estimation model for input data using genetic algorithms, and the performance of optimizing the proposed posture estimation model is excellent. Data are collected for actual unmanned stores, and point cloud data and three-dimensional keypoint information of Kinect Azure are collected using millimeter wave radar for collapse and property damage occurring in unmanned stores. As a result of the experiment, it was confirmed that the error was moored compared to the conventional posture estimation model.

An Improved Area Edge Detection for Real-time Image Processing (실시간 영상 처리를 위한 향상된 영역 경계 검출)

  • Kim, Seung-Hee;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.99-106
    • /
    • 2009
  • Though edge detection, an important stage that significantly affecting the performance of image recognition, has been given numerous researches on its execution methods, it still remains as difficult problem and it is one of the components for image recognition applications while it is not the only way to identify an object or track a specific area. This paper, unlike gradient operator using edge detection method, found out edge pixel by referring to 2 neighboring pixels information in binary image and comparing them with pre-defined 4 edge pixels pattern, and detected binary image edge by determining the direction of the next edge detection exploring pixel and proposed method to detect binary image edge by repeating step of edge detection to detect another area edge. When recognizing image, if edge is detected with the use of gradient operator, thinning process, the stage next to edge detection, can be omitted, and with the edge detection algorithm executing time reduced compared with existing area edge tracing method, the entire image recognizing time can be reduced by applying real-time image recognizing system.

3-D Building Reconstruction from Standard IKONOS Stereo Products in Dense Urban Areas (IKONOS 컬러 입체영상을 이용한 대규모 도심지역의 3차원 건물복원)

  • Lee, Suk Kun;Park, Chung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.535-540
    • /
    • 2006
  • This paper presented an effective strategy to extract the buildings and to reconstruct 3-D buildings using high-resolution multispectral stereo satellite images. Proposed scheme contained three major steps: building enhancement and segmentation using both BDT (Background Discriminant Transformation) and ISODATA algorithm, conjugate building identification using the object matching with Hausdorff distance and color indexing, and 3-D building reconstruction using photogrammetric techniques. IKONOS multispectral stereo images were used to evaluate the scheme. As a result, the BDT technique was verified as an effective tool for enhancing building areas since BDT suppressed the dominance of background to enhance the building as a non-background. In building recognition, color information itself was not enough to identify the conjugate building pairs since most buildings are composed of similar materials such as concrete. When both Hausdorff distance for edge information and color indexing for color information were combined, most segmented buildings in the stereo images were correctly identified. Finally, 3-D building models were successfully generated using the space intersection by the forward RFM (Rational Function Model).

Building Points Classification from Raw LiDAR Data by Information Theory (정보이론에 의한 LiDAR 원시자료의 건물포인트 분류기법 연구)

  • Choi Yun-Woong;Jang Young-Woon;Cho Gi-Sung
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.469-473
    • /
    • 2006
  • In general, a classification process between ground data and non-ground data, which include building objects, is required prior to producing a DEM for a certain surface reconstruction from LiDAR data in which the DEM can be produced from the ground data, and certain objects like buildings can be reconstructed using non-ground data. Thus, an exact classification between ground and non-ground data from LiDAR data is the most important factor in the ground reconstruction process using LiDAR data. In particular, building objects can be largely used as digital maps, orthophotos, and urban planning regarding the object in the ground and become an essential to providing three dimensional information for certain urban areas. In this study, an entropy theory, which has been used as a standard of disorder or uncertainty for data used in the information theory, is used to apply a more objective and generalized method in the recognition and segmentation of buildings from raw LiDAR data. In particular, a method that directly uses the raw LiDAR data, which is a type of point shape vector data, without any changes, to a type of normal lattices was proposed, and the existing algorithm that segments LiDAR data into ground and non-ground data as a binarization manner was improved. In addition, this study proposes a generalized building extraction method that excludes precedent information for buildings and topographies and subsidiary materials, which have different data sources.

  • PDF

Automatic Extraction and Measurement of Visual Features of Mushroom (Lentinus edodes L.) (표고 외관 특징점의 자동 추출 및 측정)

  • Hwang, Heon;Lee, Yong-Guk
    • Journal of Bio-Environment Control
    • /
    • v.1 no.1
    • /
    • pp.37-51
    • /
    • 1992
  • Quantizing and extracting visual features of mushroom(Lentinus edodes L.) are crucial to the sorting and grading automation, the growth state measurement, and the dried performance indexing. A computer image processing system was utilized for the extraction and measurement of visual features of front and back sides of the mushroom. The image processing system is composed of the IBM PC compatible 386DK, ITEX PCVISION Plus frame grabber, B/W CCD camera, VGA color graphic monitor, and image output RGB monitor. In this paper, an automatic thresholding algorithm was developed to yield the segmented binary image representing skin states of the front and back sides. An eight directional Freeman's chain coding was modified to solve the edge disconnectivity by gradually expanding the mask size of 3$\times$3 to 9$\times$9. A real scaled geometric quantity of the object was directly extracted from the 8-directional chain element. The external shape of the mushroom was analyzed and converted to the quantitative feature patterns. Efficient algorithms for the extraction of the selected feature patterns and the recognition of the front and back side were developed. The developed algorithms were coded in a menu driven way using MS_C language Ver.6.0, PC VISION PLUS library fuctions, and VGA graphic functions.

  • PDF

A Study on Edge Detection using Grey-Level Morphology (그레이 레벨 모폴로지를 이용한 에지 검출에 관한 연구)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.687-690
    • /
    • 2017
  • Edge detection is an important step in determining the performance of lane recognition, object and pattern detection, and so on. And much research has been done until now. Sobel, Prewitt, Roberts, and Canny edge detection algorithms are widely known. However, these algorithms are often judged to be a non-edge region when processing a smooth change in brightness value. Therefore, in this paper, edge detection algorithm using gray-level morphology using erosion, expansion, open and close in the mask area. is proposed.

  • PDF

Salt and Pepper Noise Removal using Neighborhood Pixels (이웃한 픽셀을 이용한 Salt and Pepper 잡음제거)

  • Baek, Ji-Hyeoun;Kim, Chul-Ki;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.217-219
    • /
    • 2019
  • In response to the increased use of digital video device, more researches are actively made on the image processing technologies. Image processing is practically used on various applied fields such as medical photographic interpretation, and object recognition. The types of image noise include Gaussian Noise, Impulse Noise, and Salt and Pepper. Noise refers to the unnecessary information which damages the video and the noise is mainly removed by a filter. Typical noise removal methods are Median Filter and Average Filter. While Median Filter is effective for removing Salt and Pepper noise, the noise removal performance is relatively lower in the environment with high noise density. To address such issue, this study suggested an algorithm which utilizes neighboring pixels to remove noise.

  • PDF