• 제목/요약/키워드: Object Recognition Algorithm

검색결과 517건 처리시간 0.02초

물체인식을 위한 영상분할 기법과 퍼지 알고리듬을 이용한 유사도 측정 (An Image Segmentation Method and Similarity Measurement Using fuzzy Algorithm for Object Recognition)

  • 김동기;이성규;이문욱;강이석
    • 대한기계학회논문집A
    • /
    • 제28권2호
    • /
    • pp.125-132
    • /
    • 2004
  • In this paper, we propose a new two-stage segmentation method for the effective object recognition which uses region-growing algorithm and k-means clustering method. At first, an image is segmented into many small regions via region growing algorithm. And then the segmented small regions are merged in several regions so that the regions of an object may be included in the same region using typical k-means clustering method. This paper also establishes similarity measurement which is useful for object recognition in an image. Similarity is measured by fuzzy system whose input variables are compactness, magnitude of biasness and orientation of biasness of the object image, which are geometrical features of the object. To verify the effectiveness of the proposed two-stage segmentation method and similarity measurement, experiments for object recognition were made and the results show that they are applicable to object recognition under normal circumstance as well as under abnormal circumstance of being.

패턴인식 필터링을 적용한 물체인식 성능 향상 기법 (A Method for Improving Object Recognition Using Pattern Recognition Filtering)

  • 박진렬;이승기
    • 전자공학회논문지
    • /
    • 제53권6호
    • /
    • pp.122-129
    • /
    • 2016
  • 컴퓨터 비전(Computer vision) 분야에서 물체인식을 위한 많은 알고리즘이 연구되고 있다. 그중 특징점(feature) 기반의 SURF(Speeded Up Robust Features) 알고리즘은 다른 알고리즘에 비해 속도와 정확도 면에서 우수하다. 하지만 SURF 알고리즘은 대응점 검출 시 대응점 오정합으로 물체인식에 실패하는 단점이 있다. 본 논문은 물체 인식률을 향상하기 위하여 SURF와 RANSAC(Random Sample Consensus) 알고리즘을 기반으로 물체인식 시스템을 구현하고, 패턴인식 필터링을 제안하였다. 또한, 실험을 통하여 물체 인식률 향상 결과를 제시하였다.

자율주행을 위한 라이다 기반 객체 인식 및 분류 (Lidar Based Object Recognition and Classification)

  • 변예림;박만복
    • 자동차안전학회지
    • /
    • 제12권4호
    • /
    • pp.23-30
    • /
    • 2020
  • Recently, self-driving research has been actively studied in various institutions. Accurate recognition is important because information about surrounding objects is needed for safe autonomous driving. This study mainly deals with the signal processing of LiDAR among sensors for object recognition. LiDAR is a sensor that is widely used for high recognition accuracy. First, we clustered and tracked objects by predicting relative position and speed of objects. The characteristic points of all objects were extracted using point cloud data of each objects through proposed algorithm. The Classification between vehicle and pedestrians is estimated using number of characteristic points and distances among characteristic points. The algorithm for classifying cars and pedestrians was implemented and verified using test vehicle equipped with LiDAR sensors. The accuracy of proposed object classification algorithm was about 97%. The classification accuracy was improved by about 13.5% compared with deep learning based algorithm.

FIGURE ALPHABET HYPOTHESIS INSPIRED NEURAL NETWORK RECOGNITION MODEL

  • Ohira, Ryoji;Saiki, Kenji;Nagao, Tomoharu
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.547-550
    • /
    • 2009
  • The object recognition mechanism of human being is not well understood yet. On research of animal experiment using an ape, however, neurons that respond to simple shape (e.g. circle, triangle, square and so on) were found. And Hypothesis has been set up as human being may recognize object as combination of such simple shapes. That mechanism is called Figure Alphabet Hypothesis, and those simple shapes are called Figure Alphabet. As one way to research object recognition algorithm, we focused attention to this Figure Alphabet Hypothesis. Getting idea from it, we proposed the feature extraction algorithm for object recognition. In this paper, we described recognition of binarized images of multifont alphabet characters by the recognition model which combined three-layered neural network in the feature extraction algorithm. First of all, we calculated the difference between the learning image data set and the template by the feature extraction algorithm. The computed finite difference is a feature quantity of the feature extraction algorithm. We had it input the feature quantity to the neural network model and learn by backpropagation (BP method). We had the recognition model recognize the unknown image data set and found the correct answer rate. To estimate the performance of the contriving recognition model, we had the unknown image data set recognized by a conventional neural network. As a result, the contriving recognition model showed a higher correct answer rate than a conventional neural network model. Therefore the validity of the contriving recognition model could be proved. We'll plan the research a recognition of natural image by the contriving recognition model in the future.

  • PDF

인공지능 객체인식에 관한 파라미터 측정 연구 (A Study On Parameter Measurement for Artificial Intelligence Object Recognition)

  • 최병관
    • 디지털산업정보학회논문지
    • /
    • 제15권3호
    • /
    • pp.15-28
    • /
    • 2019
  • Artificial intelligence is evolving rapidly in the ICT field, smart convergence media system and content industry through the fourth industrial revolution, and it is evolving very rapidly through Big Data. In this paper, we propose a face recognition method based on object recognition based on object recognition through artificial intelligence. In this method, Were experimented and studied through the object recognition technique of artificial intelligence. In the conventional 3D image field, general research on object recognition has been carried out variously, and researches have been conducted on the side effects of visual fatigue and dizziness through 3D image. However, in this study, we tried to solve the problem caused by the quantitative difference between object recognition and object recognition for human factor algorithm that measure visual fatigue through cognitive function, morphological analysis and object recognition. Especially, The new method of computer interaction is presented and the results are shown through experiments.

Object Recognition Using the Edge Orientation Histogram and Improved Multi-Layer Neural Network

  • Kang, Myung-A
    • International Journal of Advanced Culture Technology
    • /
    • 제6권3호
    • /
    • pp.142-150
    • /
    • 2018
  • This paper describes the algorithm that lowers the dimension, maintains the object recognition and significantly reduces the eigenspace configuration time by combining the edge orientation histogram and principle component analysis. By using the detected object region as a recognition input image, in this paper the object recognition method combined with principle component analysis and the multi-layer network which is one of the intelligent classification was suggested and its performance was evaluated. As a pre-processing algorithm of input object image, this method computes the eigenspace through principle component analysis and expresses the training images with it as a fundamental vector. Each image takes the set of weights for the fundamental vector as a feature vector and it reduces the dimension of image at the same time, and then the object recognition is performed by inputting the multi-layer neural network.

문자 인식 향상을 위한 회전 정렬 알고리즘에 관한 연구 (A Study on Rotational Alignment Algorithm for Improving Character Recognition)

  • 진고환
    • 한국융합학회논문지
    • /
    • 제10권11호
    • /
    • pp.79-84
    • /
    • 2019
  • 영상을 기반으로 하는 기술들의 지속적인 발전으로 다양한 분야에서 활용되고 있고, 카메라를 통하여 획득한 영상의 객체를 분석하고 판별하는 비전 시스템의 기술 수요가 급속하게 증가하고 있다. 비전 시스템의 핵심 기술인 영상처리는 반도체 생산 분야의 불량 검사, 타이어 표면의 숫자 및 심볼과 같은 객체 인식 검사 등에 사용되고 있고, 자동차 번호판 인식 등의 연구가 계속하여 이루어지고 있는 실정으로, 객체를 신속, 정확하게 인식할 필요가 있다. 본 논문에서는 곡면과 같은 곳에 마킹되어 있는 숫자나 심볼과 같이 기울어진 객체를 인식하기 위하여 입력된 영상 이미지의 객체 기울기에 대한 각도 값을 확인하여 객체의 회전 정렬을 통한 인식 모델을 제안한다. 제안 모델은 컨투어 알고리즘을 기반으로 객체 영역을 추출하고, 객체의 각도를 산출한 후, 회전 정렬된 이미지에 대한 객체 인식을 진행할 수 있는 모델이다. 향후 연구에서는 기계학습을 통한 탬플릿 매칭 연구가 필요하다.

로봇 손의 물체 인식을 위한 최적 접촉포즈 결정 알고리즘 (Determination of an Optimal Contact Pose for Object Recognition Using a Robot Hand)

  • 김종익;한헌수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.448-451
    • /
    • 1999
  • In this paper, we propose a new object representation method and matching algorithm for object recognition using a 3-fingered robot hand. Each finger tip can measure normal vector and shapes of a contacting surface. Object is represented by the inter-surface description table where the features of a surface are described in the diagonal and the relations between two surfaces are in the upper diagonal. Based on this table, a fast and the efficient matching algorithm has been proposed. This algorithm can be applied to natural quadric objects.

  • PDF

Signature 기반의 겹쳐진 원형 물체 검출 및 인식 기법 (Detection and Recognition of Overlapped Circular Objects based a Signature Representation Scheme)

  • 박상범;한헌수;한영준
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.54-61
    • /
    • 2008
  • This paper proposes a new algorithm for detecting and recognizing overlapped objects among a stack of arbitrarily located objects using a signature representation scheme. The proposed algorithm consists of two processes of detecting overlap of objects and of determining the boundary between overlapping objects. To determine overlap of objects, in the first step, the edge image of object region is extracted and those areas in the object region are considered as the object areas if an area is surrounded by a closed edge. For each object, its signature image is constructed by measuring the distances of those edge points from the center of the object, along the angle axis, which are located at every angle with reference to the center of the object. When an object is not overlapped, its features which consist of the positions and angles of outstanding points in the signature are searched in the database to find its corresponding model. When an object is overlapped, its features are partially matched with those object models among which the best matching model is selected as the corresponding model. The boundary among the overlapping objects is determined by projecting the signature to the original image. The performance of the proposed algorithm has been tested with the task of picking the top or non-overlapped object from a stack of arbitrarily located objects. In the experiment, a recognition rate of 98% has been achieved.

Adaptive Thinning Algorithm for External Boundary Extraction

  • Yoo, Suk Won
    • International Journal of Advanced Culture Technology
    • /
    • 제4권4호
    • /
    • pp.75-80
    • /
    • 2016
  • The process of extracting external boundary of an object is a very important process for recognizing an object in the image. The proposed extraction method consists of two processes: External Boundary Extraction and Thinning. In the first step, external boundary extraction process separates the region representing the object in the input image. Then, only the pixels adjacent to the background are selected among the pixels constituting the object to construct an outline of the object. The second step, thinning process, simplifies the outline of an object by eliminating unnecessary pixels by examining positions and interconnection relations between the pixels constituting the outline of the object obtained in the previous extraction process. As a result, the simplified external boundary of object results in a higher recognition rate in the next step, the object recognition process.