• Title/Summary/Keyword: Object Matching

Search Result 644, Processing Time 0.03 seconds

An Energy-Efficient Matching Accelerator Using Matching Prediction for Mobile Object Recognition

  • Choi, Seongrim;Lee, Hwanyong;Nam, Byeong-Gyu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.2
    • /
    • pp.251-254
    • /
    • 2016
  • An energy-efficient object matching accelerator is proposed for mobile object recognition based on matching prediction scheme. Conventionally, vocabulary tree has been used to save the external memory bandwidth in object matching process but involved massive internal memory transactions to examine each object in a database. In this paper, a novel object matching accelerator is proposed based on matching predictions to reduce unnecessary internal memory transactions by mitigating non-target object examinations, thereby improving the energy-efficiency. Experimental results show a 26% reduction in power-delay product compared to the prior art.

Block Matching Algorithm Using an Adaptive Matching Block for Object Tracking (객체추적을 위한 적응적 정합 블록을 이용한 블록정합 알고리즘)

  • Kim, Jin-Tea;Ahn, Soo-Hong;Oh, Jeong-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.455-461
    • /
    • 2011
  • In object tracking using the block mating algorithm, it is not proper to use a fixed matching block to track an object of which size may be various and can be changed at any time. This paper defines an adaptive matching block for the dynamic environment and proposes a block matching algorithm for it. The matching block is composed of a main-block of $10{\times}10$ pixels and 8 sub-blocks of $6{\times}6$ pixels in a wide area of $42{\times}42$ pixels, the main-block located its center is used as an object block, and the sub-blocks located its boundary are used as candidates for the object block. The proposed algorithm extracts the object blocks from the sub-blocks by using their motion vectors for 10 previous frames and performs the block matching with the main block and them. The experiments for perform estimation show that the proposed algorithm extracts just valid object blocks from the matching block and keeps an object having free movement in image center area.

Joint Template Matching Algorithm for Associated Multi-object Detection

  • Xie, Jianbin;Liu, Tong;Chen, Zhangyong;Zhuang, Zhaowen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.395-405
    • /
    • 2012
  • A joint template matching algorithm is proposed in this paper to reduce the high rate of miss-detection and false-alarm caused by the traditional template matching algorithm during the process of multi-object detection. The proposed algorithm can reduce the influence on each object by matching all objects together according to the correlation information among different objects. Moreover, the rate of miss-detection and false-alarm in the process of single-template matching is also reduced based on the algorithm. In this paper, firstly, joint template is created from the information of relative positions among different objects. Then, matching criterion according to normalized cross correlation is generated for multi-object matching. Finally, the proposed algorithm is applied to the detection of watermarks in bill. The experiments show that the proposed algorithm has lower miss-detection and false-alarm rate comparing to the traditional NCC algorithm during the process of multi-object detection.

AN OBJECT TRACKING METHOD USING ADAPTIVE TEMPLATE UPDATE IN IR IMAGE SEQUENCE

  • Heo, Pyeong-Gang;Lee, Hyung-Tae;Suk, Jung-Youp;Jin, Sang-Hun;Park, Hyun-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.174-177
    • /
    • 2009
  • In object tracking, the template matching methods have been developed and frequently used. It is fast enough, but not robust to an object with the variation of size and shape. In order to overcome the limitation of the template matching method, this paper proposes a template update technique. After finding an object position using the correlation-based adaptive predictive search, the proposed method selects blocks which contain object's boundary. It estimates the motion of boundary using block matching, and then updates template. We applied it to IR image sequences including an approaching object. From the experimental results, the proposed method showed successful performance to track object.

  • PDF

Pattern Recognition Method Using Fuzzy Clustering and String Matching (퍼지 클러스터링과 스트링 매칭을 통합한 형상 인식법)

  • 남원우;이상조
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.11
    • /
    • pp.2711-2722
    • /
    • 1993
  • Most of the current 2-D object recognition systems are model-based. In such systems, the representation of each of a known set of objects are precompiled and stored in a database of models. Later, they are used to recognize the image of an object in each instance. In this thesis, the approach method for the 2-D object recognition is treating an object boundary as a string of structral units and utilizing string matching to analyze the scenes. To reduce string matching time, models are rebuilt by means of fuzzy c-means clustering algorithm. In this experiments, the image of objects were taken at initial position of a robot from the CCD camera, and the models are consturcted by the proposed algorithm. After that the image of an unknown object is taken by the camera at a random position, and then the unknown object is identified by a comparison between the unknown object and models. Finally, the amount of translation and rotation of object from the initial position is computed.

Object Tracking using Adaptive Template Matching

  • Chantara, Wisarut;Mun, Ji-Hun;Shin, Dong-Won;Ho, Yo-Sung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Template matching is used for many applications in image processing. One of the most researched topics is object tracking. Normalized Cross Correlation (NCC) is the basic statistical approach to match images. NCC is used for template matching or pattern recognition. A template can be considered from a reference image, and an image from a scene can be considered as a source image. The objective is to establish the correspondence between the reference and source images. The matching gives a measure of the degree of similarity between the image and the template. A problem with NCC is its high computational cost and occasional mismatching. To deal with this problem, this paper presents an algorithm based on the Sum of Squared Difference (SSD) and an adaptive template matching to enhance the quality of the template matching in object tracking. The SSD provides low computational cost, while the adaptive template matching increases the accuracy matching. The experimental results showed that the proposed algorithm is quite efficient for image matching. The effectiveness of this method is demonstrated by several situations in the results section.

A New Matching Strategy for SNI-based 3-D Object Recognition (면 법선 영상 기반형 3차원 물체인식에서의 새로운 매칭 기법)

  • 박종훈;최종수
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.7
    • /
    • pp.59-69
    • /
    • 1993
  • In this paper, a new matching strategy for 3-D object recognition, based on the Surface Normal Images (SNIs), is proposed. The matching strategy using the similarity decision function [9,10] lost the efficiency and the reliability of matching, because all features of models within model base must be compared with the scene object features, and the weights of the attributes of features is given by heuristic manner. However, the proposed matching strategy can solve these problems by using a new approach. In the approach, by searching the model base, a model object whose features are fully matched with the features of sceme object is selected. In this paper, the model base is constructed for the total 26 objects, and systhetic and real range images are used in the test of the system operation. Experimental result is performed to show the possibility that this strategy can be effectively used for the SNI based recognition.

  • PDF

Object Recognition Using Hausdorff Distance and Image Matching Algorithm (Hausdorff Distance와 이미지정합 알고리듬을 이용한 물체인식)

  • Kim, Dong-Gi;Lee, Wan-Jae;Gang, Lee-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.5
    • /
    • pp.841-849
    • /
    • 2001
  • The pixel information of the object was obtained sequentially and pixels were clustered to a label by the line labeling method. Feature points were determined by finding the slope for edge pixels after selecting the fixed number of edge pixels. The slope was estimated by the least square method to reduce the detection error. Once a matching point was determined by comparing the feature information of the object and the pattern, the parameters for translation, scaling and rotation were obtained by selecting the longer line of the two which passed through the matching point from left and right sides. Finally, modified Hausdorff Distance has been used to identify the similarity between the object and the given pattern. The multi-label method was developed for recognizing the patterns with more than one label, which performs the modified Hausdorff Distance twice. Experiments have been performed to verify the performance of the proposed algorithm and method for simple target image, complex target image, simple pattern, and complex pattern as well as the partially hidden object. It was proved via experiments that the proposed image matching algorithm for recognizing the object had a good performance of matching.

Object matching algorithms using robust hausdorff distance measure (Robust hausdorff 거리 척도를 이용한 물체 정합 알고리듬)

  • 권오규;심동규;박래홍
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.93-101
    • /
    • 1997
  • A Hausdorff distance (HD) is one of commonly used measures for object matching. It calculates the distance between two point sets of edges in two-dimensional binary images without establishing correspondences. This paper proposes three object matching algorithm using robust HD measures based on M-estimation, least trimmed square (LTS), and .alpha.-trimmed mean methods, which are more efficient than the conventional HD measures. By computer simulation with synthetic and real images, the matching performance of the conventional HD smeasures and proposed' robust ones is compared.

  • PDF

The Alignment of Measuring Data using the Pattern Matching Method (패턴매칭을 이용한 형상측정 데이터의 결합)

  • 조택동;이호영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.307-310
    • /
    • 2000
  • The measuring method of large object using the pattern matching is discussed in the paper. It is hard and expensive to get the complete 3D data when the object is large or exceeds the limit of measuring devices. The large object is divided into several smaller areas and is scanned several times to get the data of all the pieces. These data are aligned to get the complete 3D data using the pattern matching method. The point pattern matching method and transform matrix algorithm are used for aligning. The laser slit beam and CCD camera is applied for experimental measurement. Visual C++ on Window98 is implemented in processing the algorithm.

  • PDF